Modern
Programming
Made Easy

Using Java, Scala, Groovy, and
JavaScript

Adam L. Davis

APress’

Modern
Programming
Made Easy

Adam L. Davis

Apress’

Modern Programming Made Easy: Using Java, Scala, Groovy, and JavaScript

Adam L. Davis
Oviedo, Florida
USA

ISBN-13 (pbk): 978-1-4842-2489-2 ISBN-13 (electronic): 978-1-4842-2490-8
DOI10.1007/978-1-4842-2490-8

Library of Congress Control Number: 2016961534
Copyright © 2016 by Adam L. Davis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Tri Phan

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise
Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Michael G. Laraque

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC
is a California LLC and the sole member (owner) is Springer Science+Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress. com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

Dedicated to all teachers, especially those who influenced me.
Thank you for teaching!

Contents at a Glance

About the Authorcccnvsmmmmms s —————— XV
About the Technical ReVIeWETrccucssssmsmsmsmmmssssssssasssssssnssssssnssns Xvii
Part I: Starting Out..........ccccemmmmmmmemmme 1
Chapter 1: Introductionccccuneemmmmnnsemnnmnmsessnmmsessmmssasnmssnn. 3
Chapter 2: Software to Install............ccccinimmninmnsennnsesmnsessnen. 5
Chapter 3: The BaSiCS.....ccuuttmmmmmmmmmmmmmnmnmmmmmmmssssnssssssssssssssssnsssssssnsss 7
Part lI: Glorified Calculatorccveemmvmsssmsssnsnsansnnns 13
Chapter 4: Math...........ccccinineemmmmnnsemnmmnmsesnmmsssssmmsssssmnsssssnmns 15
Chapter 5: Arrays, Lists, Sets, and Maps.........cccceumnsneenrnssssnnnnnnnes 19
Chapter 6: Conditionals and LOOPS......ccccvuuemssssssmmssssnnsssssssssssssnnnns 25
Chapter 7: Methodscccsvcemmssmismmmssssmsmssss s s s s snsmsnnnnss 29
Part Ill: Polymorphic Spree.......cccccceemmmmmmmmmmnnnnnnnnnnnnnnnas 33
Chapter 8: Inheritance.........cccuicrmnsmmmmssmmmnssssmnssesmssenmssssssasnmn. 35
Chapter 9: Design Patterns.........cuccciimmnsemnmmmmsseennmmssessnnmssssssnennes 43
Chapter 10: Functional Programmingcccusseesmmssssessmsssssassnnsns 49
Chapter 11: Refactoringccuccrmsssmsmmssesmmssssmssssnmssssnsssssnssssssssssnns 57
Chapter 12: UtilitieS......cccvursssemmmmmsssemnmmmssssssnmmssssssnssssssssnssssssssnsnsans 61

CONTENTS AT A GLANCE

Part IV: Real Life......ccceeverrsmenssmsmmsssssmsssssnnsssssnssssssnnnnnnss 07

Chapter 13: BUilding.......ccussemmmmssssmnmmmsssssnmmsssssssmmssssssssssssssssssssssnns 69
Chapter 14: Testing.......cccusmrrssmmmssansmsssnsesssnsesssssesssssesssnsssssnssssnanes 77
Chapter 15: Input/Output........ccnimmmmmmmnnn s ——————— 81
Chapter 16: Version Control............ccccuseemmmnssssnnnmssssssnnssssssssnssssnnns 85
Chapter 17: The Interwebcccoccmmismrmssmsmmsssmmssssmsssssssssssssans 87
Chapter 18: Swinging GraphiCscccvssssessssssssnnsssssssnssssssssnsssssssnns 95
Chapter 19: Creating a Magical User EXperiencecccusssessrsans 103
Chapter 20: Databasescccerrmsssnnnmmssssnsnmsssssnsnssssssnssssssssnnssnss 107
Chapter 21: Conclusionccccunssemmmmnssssssnmsssssssnmsssssssssssssssnnnnss 111
APPENUIXES 1uueerrrsssnnnrsssssnnnnsssssnnnssssssnnnnsssssnnnssssssnnnssssssnnnsssssnnnnnsss 113
INEX.ciiiesrimsnessne s s s s s —————— 123

vi

Contents

About the AULNOFccovreemciiirreeri e nnnans Xv

About the Technical REVIEWETccerrrreemmmmssssssssmssssnnnsssssssssnsssnnnns Xvii

Part I: Starting Out..........ccccvememmmmemmmeemseesnnennnnenesnnennnn 1

Chapter 1: Introductioncccunnmeemmmmmmnnnmmsssssssnsm s ———————— 3
1.1 Problem SOIVINGcccvvrvrrerrrerserrer e sne e 3
1.2 About ThiS BOOKccceoiriirirrircrers s 3
Chapter 2: Software to Install.........cccccerrriimnimnnemmnnnnnm——————— 5
2.1 JAVA/GIOOVYovruereirieresecse s ss s sn s s e sas s se s snesennens 5

211 TrYING R OUL oo nennas 5
P 01111 TN 6
2.3 Code on GitHUD ... 6
Chapter 3: The BasiCS......ccuusemmmmmsssnnnmmsssssnnnmssssssssssssssssnssssssssnsssssnns 7
BT T 00 To 13T =] 1 1L 7
3.2 Primitives and Reference..........coovvrrircnnicnssssesssssesesessennens 7
3.3 Strings/Declarations...........ccceeverrrrnssss s 8
3.4 StAteMENTS.......ccooerecerecrre s 9
3.5 ASSIGNMENT ...t 9
3.6 Class and ODjJEcCtccocverercrcrcr s 9

3.6.1 Properties and Methods ..o 10

3.6.2 GrOOVY Cl@SSEScoururuecererneeeressssesesesssss e sesssss s e sesssss e sssssssesssssssssssssns 10

3.6.3 JavaScript Prototypesccccorrncrcnerncscsesre s 10

vii

CONTENTS

3.6.4 SCAlA CIASSES ...cerueerrerrrirrenisesis e s sse s e e s e s sse e sse st s e e s sessssssnssssnens 1
3.6.5 Creating a New ODJECT..........ooeceierereccererrecrt s 1
3.7 COMMENTS....cceereerrirreererese e sn s s ns 11
BTt V1111 T 11

Part II: Glorified Calculator........cccoorremesnrmmesssnemssssnnnnenes 13

Chapter 4: Math..........cccccvinemmmmnnnsemnmmnmsssnmmnssssmmsssssmesssssannnn 15
4.1 Adding, Subtracting, EC.cccocrvrvrrrrrrrrererer e 15
4.2 More Complex Math ... 16
4.3 Random NUMDEISccccvernmrnmrnmnnereresesese s seseseas 17
11 111 18
Chapter 5: Arrays, Lists, Sets, and Maps........cccceinnnnmmssssnsnnsnnnnnnns 19
ST Y 4 -\ S S 19
T 1 £ 20

5.2.1 GrOOVY LiSES ...cov ettt 21

5.2.2 SCAIA LSScovrercerererecirere et e 21

5.2.3 JAVASCHIPE AITAYS ...coveerccerereeise e e se s s s ens 21
9.3 SIS .. —————————————— 22
D4 MAPS ..o s 23

541 GrOOVY MAPS.....coerererrereerersesersesessersssessssessessssessssesssssssssssssssssessssesssnssassssaens 23

5.4.2 SCAIAMAPS....cceeerererrererrererereresseressessesessessssesessessssessesesssssssesasesssnssssssaens 23

5.4.3 JavaSCHPt MAPS.......cccvererrererererserersersesessesssessssessssessesesssssssessssesssnssssssaens 24
9.5 SUMMANY....oiicrr e 24
Chapter 6: Conditionals and LOOPS.......ccccurnsssemnsmsssssnsnsssssssnsssssnnns 25
500 O 1 1 1= 0 = - 25
6.2 switch Statements ... ——— 26
6.3 B00lean LOGIC......c.ccevrerrerierrirerrersee s e s s ses e s sessne e snesnes 26

viii

CONTENTS

6.4 LOOPING ...eovererererierrerses s s ses s sss e sas s s s s e s snssnssns s s snssnssessnennns 27
6.5 SUMMACY......coiirerrrrr e 28
Chapter 7: Methodsccccvvvnmnmssnsssnmmnnmmmmsssssssssnsssssssssssssnnns 29
7.1 Call ME ... e e e e s s sn s ssssnenes 29

A% IR T 1 [0 N T 30
7.2 Break It DOWN.......covircercrcnre e 30
7.3 Return 10 Sender ... 30
4 S L[31
7.5 VAAIQS ...coceeceecireree s sss e s s snssnssns s s s s snssnsssssnssnssnsssssnannnns 31
7.6 Main Methodccoermrererrccreree e 31
7.7 EXEICISES...cicciueercresissesesesssss s s ss s sns s s ss s s s sss s 32
7.8 SUMMACY.....ooiirceriresse s s 32
Part lIl: Polymorphic Spree.........cccuussmemmmmmmmmssssssssssnnnnns 33
Chapter 8: InNheritance.........cccvrvnsssmnrnmssssnsmsssssssssssssssnsssssssssssssssnns 35
8.1 ODJECHfY e ——— 35

8.1.1 JAVASCHIPL....cov et 36
8.2 Parenting 1071c.ccevrverrrcrrrrr e 36

< T I 1\ 1o 7) 37
ST N o (1€ 10 [SRR 38
8.4 PUDIIC PartS ..ot s 38

S S\ 1 o) OO 39
8.5 INtEITACESc.covrcirercerr s 39
8.6 ADSIrACt Classcccceererererererereneseses s 39
T A =111 S 40
8.8 ANNOLALIONScceercerereerere e s 40
8.9 AULODOXING ..cveeveerrrrersessessssssssssssssessrssessss s s sessnesnssnsssssnssnssrnssnnnnns 41

ix

CONTENTS

8.9.1 AUODOXING....eitieieirereresci s e 4

8.9.2 UNDOXING ..t 4
8.10 SUMMAY ... sn e e re s 41
Chapter 9: Design Patterns...........ccormmssmmmmmmssssnnnmsssssssssssssssnsssssnnns 43
0.1 ODSEIVEN ... n s sn s re s 43
T L O 44
0.3 DSL.ueriiccercrererrrrs s 45

0.3.1 ClOSUIES.....ecueeerercee st se s se s e 46

9.3.2 Overriding OPEratorscocceererercneserese et 47
I Vo (0] R 48
Chapter 10: Functional Programmingccuceummssssassmsssssssnsssssnnes 49
10.1 Functions and CIOSUIES..........ccceerreremsmresessessssessessssesssssssssessenses 49
10.2 Map/FIREr/EIC. ...ttt 51
10.3 IMMUEaDIlItY ...ccveeeeceeceece e ———— 53
104 JAVA 8. s 54
10.5 GIOOVY ..oeeeceereereereereeseesessasssssassasssssassas s sassassassnssnssessnssnssassnssnnnes 55
10.6 SCaIAoceicerireire e 55
10.7 SUMMACY....ooeiereeerereee e snn e nnas 56
Chapter 11: Refactoringccccusemmmmssssmmmmmsssssnnmsssssssnssssssssssssssnns 57
11.1 Object-Oriented Refactoringccoevveerceresesiesnscsesesesenennas 57
11.2 Functional Refactoring.........ccceceeerererressessessessesses s s sessessenns 57
11.3 Refactoring EXamplesccceevveeecrrercsces s 58

11.3.1 Renaming @ Method ... 58

11.3.2 Moving a Method from One Class to Another (Delegation)....................... 58

11.3.3 Replacing a Bunch of Literals (Strings or Numbers) with a Constant
L] e LT T) T 59

11.3.4 Renaming @ FUNCHION.........coccieriirccere et 59

CONTENTS

11.3.5 Wrapping a Function in Another Function and Calling It........................... 59
11.3.6 Inline a Function Wherever It Is Calledcocovenerinininininsnsnsnsnssssssnnnns 60
11.3.7 Extract Common Code into a Function (the Opposite of the Previous)..... 60
Chapter 12: UtilitieS......ccccunsemmmmnsssnnnmmssssssnsmssssssssssssssssssssssssssssssnns 61
12.1 Dates and TIMES........cccvrivnimnnmnns s 61
1211 Java 8 Date-Time ... 62
12.1.2 GroOVY Date......covecceccrcretre e 62
12.1.3 JavaScript Date ... 63
12.1.4 Java DateFormat ... 63
12,2 CUITENCYeoreerecrrserresessesss s e sss e sse s s sse s e s ssesss s snssnsssssnsesnes 64
12.3 TIMEZONE.....ov ittt 64
12,4 SCANNETcerviitrriee s 65

Part IV: Real Life......ccccceveremmmusssmnmssssenssssssnsnssssnnnsssnnnnnsss 07

Chapter 13: Building.........cousemmsmmsmmmssmmssmsssmsssmsssmsssssssssssssssssssssnes 69
131 ANt —————————— 69
L T |- 11 o 69
13.2.1 USING MAVEN........cceeerrceererrs e s s ss s ss s s nessnns 70
13.2.2 Starting @ NEW ProjECtcceeeeerrvencrerseseserssese e sessssssssesessnns 70
13.2.3 Life CYCIE...ceerrrreeererrreerir e ss s nnnnns n
13.2.4 EXecuting COE.......cecceueeerrerererererte e serae e e res e ssesessesessesessssasaesasseens 72
13.3 Gradle......ovviiiiiririn e ————— 73
13.3.1 Projects and TASKS........ccccevererenenenense s ssesse e ssessessssssssesssssssssssssanns 73
13.3.2 PIUGQ-INS ettt a s sa e sa e a et sa e aesa e a e nn e naennan 74
13.3.3 Maven DependenCiBscccueverrererensesessessessessessessessesssssessesssssssssssssanns 74

xi

CONTENTS

Chapter 14: Testing.......cccusmrmssemsmsssnsmsssnsmsssnsssssssesssssssssnsssssnsssssnnes 77
14.1 TYPES OF TESTS...eeoececeece e 77
14.2 JUNIL....oeee e s 78

14.21 HAMCTESooveevrsseeessssesessssseseesssessssssssssesses 78

14.2.2 ASSUMPLIONScereeeerererereerereesereesesesesseresesassessesesaesesersssessssesassssassssenes 79
Chapter 15: Input/Qutput.........cccccminismmmmmnsesnnsassnsssn——— 81
0 LT T 11 TP 81
15.2 Reading Files........ccoeeererenerrersersreses e 81
15.3 Writing FileS ..o 82
15.4 Downloading Files........ccccevrrrrrrrrnnrrerrs s 83
15.5 SUMMArY......ooieer e 83
Chapter 16: Version Control........cccccemmmmnmmmmmssnssssnnnnmsmsssssssssssnnns 85
L I 11011 £ T 85
16.2 Gl s 86
L T 1T (1 T 86
Chapter 17: The Interwebcccccmmmnnsemmmmmnssssnmmmssssmmmssssnmnsnn 87
018 1 T TP 88
17.2 My FirStWeh APP .ceeoeeeeeeeeereceesee e sss e e sns s e e e 88
17.3 The Holy GrailSccooveererersernnrncsinse s snas 89

17.3.1 QUICK OVEIVIBW ...t 89

17.3.2 PlUGEINS ottt e 91
0 S [0 1o TP 92
17.5 ThE REST ... se e sesesasss s 93

17.5.1 Using Maven ArChetypes ... ses e 93
17.6 SUMMACY ...t 93

xii

CONTENTS

Chapter 18: Swinging GraphiCscccsvssssessssssssnnssssssssssssssssnsssssssnns 95
18.1 Hello WINAOW ... 95
18.2 Push My BUttons ... 97
18.3 Fake BroWSer ... 97
18,4 GHfON ... s 99
18.5 Advanced GraphiCs.........ccccvrerverreriersessesseessesssessesssessesssessssssenns 99
18.6 Graphics GIOSSArYccccervrerrereriernsnrresen s s sss s e e ssesessens 100
LT 111111 - 101
Chapter 19: Creating a Magical User EXperiencec...ccuseescanas 103
19.1 Application Hierarchyccooevvrrrcrcrcrcr e 103
19.2 Consider YOUr AUGIENCE........cccoceererererereeresesesssesesessesesassenens 103
19.3 Choice IS an lUSIONcccoereeerrieserseserre s 104
19.4 DIreCHION....cceiiccrcrcrrr e 104
19.5 SKUEMOIPRISM....ccceierreriee s nne e 104
19.6 Context Is Important..........ccococrercrcr e 105
197 KISS.... et 105
19.8 You Are Not the USErccoeevvicrnniicrninncsse s 105
19.9 SUMMACY......cocirerrr e 105
Chapter 20: Databasesuccrmrmsssennmmmsssssnnssssssssnssssssnsssessssnnnnnss 107
20.1 SQL (Relational) Databases..........ccocerererrresersnesnssseseesee e e 107

20,11 SQL vvvversmrreessssssess 108

20.1.2 FOreign KeYS.......co e 108

20.1.3 CONNECHIONS......ceeeereereerrrersrersrsrsssssssssssssssssss s sssssssssssssssssssssssssssssssssssases 109

xiii

CONTENTS

20.2 NOSQL Databases.........cccerrerrererreressesesesessssessesessessssessessssesns 109
20.2.1 REIS....ourveeurersreessessssnessssssssesssssssssnsssnns 110
20.2.2 MONQODB........oureeesressreessmesssesssmsssssssssssssssssssssssssssssssssssssessssssssssssssanes 110
20.2.3 CASSANAIA.......cererererererererererereresesesesesesesesesesssesesssesssssssssssssessssssssssssssssnens 110
20.2.8 VORDB......cooureerreessesssseessssessnns 110

20.3 SUMMAY....ccoriirreirerrrrere e sas e s se s s s s sns e enas 110

Chapter 21: ConcluSioncuuseemssmnmmmsmmmssssssssssmmsssmssssssssnnns 111

APPENUIXES cuvemerrrsssannnnsssssnnnssssssnnnssssssnnnssssssnnnssssssnnssssssnnnssssssnnnnss 113

Appendix A: JAVA/GIOOVYcceeereererrerresssnns 113
NO JAVA ANIOG c..vvveerreresseessseesseesssnsssssssssnessssssssessssssssssnssssmssssssssssssssssssssssssssnes 114

Appendix B: Java/Scala............ccceererrrnerennereene s 115
NO JAVA ANAIOQGcovicerrierectre e e e enan 115
NUIL Nil, ELC..vvuvereveeeeeuseeesseessessssesssessssessssssssssssssssesssssssssssssssssssssssssesssassssssesssanes 116

Appendix C: Java/JavaScCript........ccccveerrrrrrsersessesses s ses s sesenns 117
NO JAVA ANAIOGUE ... e se s s e s s e sensnns 117

AppendiX D: RESOUICES........coerveererreererrsrserssesesssessesssessssssesssssassssssnes 118

Appendix E: Free Online Learningcccocvveveeenesnscsssessessssessssensens 119
The Death 0f COlIEGE?.......vivrerrreerirr ettt 119
MONEBY ..o e nan 119
More Onling RESOUICES........ccuerrerrrerrnserne s s s s se s e ssessssesessessssenas 120

Appendix F: Java ... 121

INA@X.ueeeniiissnnnnnnssssnnnnsssssnnnnnssssnnnnsssssnnnnnssssnnnnnssssnnnnnssssnnnnnssssnnnnnnssnn 123

xiv

About the Author

Adam L. Davis makes software. He’s spent many years
developing in Java (since Java 1.2) and has enjoyed
using Spring and Hibernate. Since 2006 he’s been using
Groovy and Grails in addition to Java to create SaaS web
applications that help track finances for large
institutions (among other things). Adam has a Masters
and a Bachelors degree in Computer Science from
Georgia Tech. He is also the author of Learning Groovy
(Apress, 2016).

XV

http://www.apress.com/us/book/9781484221167

About the Technical

Reviewer

Tri Phan is the founder of the Programming Learning
Channel on YouTube. He has more than seven years of
experience in the software industry. Specifically, he has
worked in many outsourcing companies and written
many applications of many fields in different
programming languages, such as PHP, Java, and C#.

In addition, he has more than six years” experience
teaching at international and technological centers,
such as Aptech, NIIT, and Kent College.

xvii

PART |

Starting Out

As computers become more involved in everything we do in society, there will be an
ever greater need for people who know how to tell these computers what to do. We call
these people many different names: developer, coder, and programmer, among others.

Over the past few decades, a lot has changed in programming. We're going to
ignore all that and just get down to the business of programming. If you'd like to
learn more about the history of programming, by all means, get a history book from
the library.

Figure 1. Babbage’s analytic engine (courtesy of http://ds.haverford.edu/
bitbybit/)

http://ds.haverford.edu/bitbybit/
http://ds.haverford.edu/bitbybit/

CHAPTER 1

Introduction

In my experience, learning how to program (in typical computer science classes) can
be very difficult. The curriculum tends to be boring, abstract, and unattached to “real
world” coding. Owing to how fast technology progresses, computer science classes tend
to teach material that is very quickly out of date and out of touch. I believe that teaching
programming could be much simpler, and I hope this book achieves that goal.

Note There’s going to be a lot of tongue-in-cheek humor throughout this book, but this
first part is serious. Don't worry, it gets better.

1.1 Problem Solving

Before you learn to program, the task can seem rather daunting, much like looking at
aredwood tree on the cover of a book before you climb it. However, over time, you will
realize that programming is really about problem-solving.

On your journey toward learning to code, as with so much in life, you will encounter
many obstacles. You may have heard it before, but it really is true: the path to success is
to try, try, and try again. People who persevere the most tend to be the most successful
people.

Programming is fraught with trial and error. Although things will get easier over time,
you'll never be right all the time. So, much as with most things in life, you must be patient,
diligent, and curious, to be successful.

1.2 About This Book

This book is organized into several chapters, beginning with the most basic concepts.

If you already understand a concept, you can safely move ahead to the next chapter.
Although this book concentrates on Java, it also refers to other languages, such as Groovy,
Scala, and JavaScript, so you will gain a deeper understanding of concepts common to all
programming languages.

© Adam L. Davis 2016 3
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_1

CHAPTER 1 " INTRODUCTION

QQ Tips Text styed like this provides additional information that you may find helpful.

0 Info Text styled this way usually refers the curious reader to additional information.

A Warnings Text such as this cautions the wary reader. Many have fallen along the
path of computer programming.

g
, Exercises This is an exercise. You shouldn’t see too many of these.

CHAPTER 2

Software to Install

Before you begin to program, you must install some basic tools.

2.1 Java/Groovy

For Java and Groovy, you will have to install the following:
e JDK (Java Development Kit), such as JDK 8
e IDE (Integrated Development Environment), such as NetBeans 8

e Groovy: A dynamic language similar to Java that runs on the JVM
(Java Virtual Machine)

g
& Install Java and NetBeans 8 Download and install the Java JDK 8 with NetBeans.’
Open NetBeans and select File » New Project... » Java Application

g
& Install Groovy Go and install Groovy?.

2.1.1 Trying It Out

After installing Groovy, you should use it to try coding. Open a command prompt, type
groovyConsole, and hit Enter to begin.

g
& In groovyConsole, type the following and then hit Ctrl+r to run the code.

1 print “hello”

'www.oracle.com/technetwork/java/javase/downloads/index.html.
*http://groovy.codehaus.org/.

© Adam L. Davis 2016 5
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_2

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://groovy.codehaus.org/

CHAPTER 2 * SOFTWARE TO INSTALL

Because most Java code is valid Groovy code, you should keep the Groovy console open
and use it to try out all of the examples from this book.

You can also easily try out Scala and JavaScript in the following ways:

e For JavaScript (JS), just open your web browser and go to
jsfiddle.net.?

e For Scala, type “scala” in your command prompt or terminal.

2.2 Others

Once you have the preceding installed, you should eventually install the following:
e Scala* An object-oriented language built on the JVM
e Git® A version control program
e Maven®: A modular build tool

Go ahead and install these, if you're in the mood. I'll wait.

2.3 Code on GitHub

A lot of the code from this book is available on github.com/modernprog.” You can go there
at any time, to follow along with the book.

*http://jsfiddle.net/.
“www.scala-lang.org/.
*http://git-scm.com/.
https://maven.apache.org/.
"https://github.com/modernprog.

http://jsfiddle.net/
http://www.scala-lang.org/
http://git-scm.com/
https://maven.apache.org/
https://github.com/modernprog
http://jsfiddle.net/
http://www.scala-lang.org/
http://git-scm.com/
https://maven.apache.org/
https://github.com/modernprog

CHAPTER 3

The Basics

In this chapter, I'll cover the basic syntax of Java and similar languages.

3.1 Coding Terms

Source file refers to human-readable code. Binary file refers to computer-readable code
(the compiled code).

In Java, the source files end with . java, and binary files end with . class (also called
class files). You compile source files using a compiler, which gives you binary files.

In Java, the compiler is called javac; in Groovy it is groovyc; and it is scalac in Scala.
(See a trend here?)

However, some languages, such as JavaScript, don’t have to be compiled. These are
called interpreted languages.

3.2 Primitives and Reference

Primitive types in Java refer to different ways to store numbers and have historical but
also practical significance, for example:

e char: A single character, such as A (the letter A)

e byte: Anumber from -128 to 127 (8 bits'). Typically, a way to store
or transmit raw data

e short: A 16-bit signed integer. It has a maximum of about 32,000.

e int: A 32-bit signed integer. Its maximum is about 2 to the 31st
power.

e long: A 64-bit signed integer. Maximum of 2 to the 63rd power

e float: A 32-bit floating point number. This is an imprecise value
that is used for things such as simulations.

'A bit is the smallest possible amount of information. It corresponds to a 1 or 0.

© Adam L. Davis 2016 7
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_3

CHAPTER 3 I THE BASICS

e double: Like float but with 64-bit

e boolean: Has only two possible values: true and false
(much like 1 bit)

0 See Java Tutorial—Data Types? for more information.

GROOVY, SCALA, AND JAVASCRIPT

Groovy types are much the same as Java’s. In Scala, everything is an object, so
primitives don’t exist. However, they are replaced with corresponding value types
(Int, Long, etc.). JavaScript has only one type of number, Number, which is similar to
Java’s float.

Every other type of variable in Java is a reference. It points to some object in memory.
You can think of this as an address.

3.3 Strings/Declarations

A stringis a list of characters (text). It is a very useful built-in class in Java (and most
languages). To define a string, you simply surround some text in quotes. For example:

1 String hello = "Hello World!";

Here the variable hello is assigned the string "Hello World!".

In Java, you must put the type of the variable in the declaration. That’s why the first
word above is String.

In Groovy and JavaScript, strings can also be surrounded by single quotes ('hello").
Also, declaring variables is different in each language. Groovy allows you to use the
keyword def, while JavaScript and Scala use var. For example:

1 def hello = "Hello Groovy!" //groovy
2 var hello = "Hello Scala/3S!" //Scala or 1S

*http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

CHAPTER 3 I THE BASICS

3.4 Statements

Every statement in Java must end in a semicolon (;). In many other languages, such as
Scala, Groovy, and JavaScript, the semicolon is optional, but in Java, it is necessary. Much
as how periods at the end of each sentence help you to understand the written word, the
semicolon helps the compiler understand the code.

By convention, we usually put each statement on its own line, but this is not
required, as long as semicolons are used to separate each statement.

3.5 Assignment

Assignment is an extremely important concept to understand, but it can be difficult for
beginners. However, once you understand it, you will forget how hard it was to learn.

Let’s start with a metaphor. Imagine you want to hide something valuable, such as a
gold coin. You put it in a safe place and write the address on a piece of paper. This paper
is like a reference to the gold. You can pass it around and even make copies of it, but the
gold remains in the same place and does not get copied. On the other hand, anyone with
the reference to the gold can get to it. This is how a reference variable works.

Let’s look at an example.

1 String gold = "Au";
2 String a = gold;

3 String b = a;

4 b ="Br";

After running the preceding code, gold and a refer to the string "Au", while b refers to "Br".

3.6 Class and Object

A class is the basic building block of code in object-oriented languages. A class typically
defines state and behavior. The following class is named SmallClass:

1 package com.example.mpme;
2 public class SmallClass {

3}

Class names always begin in an uppercase letter in Java. It’s common practice to use
CamelCase to construct the names. This means that instead of using spaces (or anything
else) to separate words, we uppercase the first letter of each word.

The first line is the package of the class. A package is like a directory on the file system.
In fact, in Java, the package must actually match the path to the Java source file. So, the
preceding class would be located in the path com/example/mpme/ in the source file system.

An object is an instance of a class in memory. Because a class can have multiple
values within it, an instance of a class will store those values.

CHAPTER 3 I THE BASICS

f Create a Class
e Open your IDE (NetBeans).

e Right-click your Java project and choose New » Java Class.

3.6.1 Properties and Methods

Next you might want to add some properties and methods to your class. A property is a
value associated with a particular object. A method is a block of code on a class.

1 package com.example.mpme;

2 public class SmallClass {

3 String name;

4 String getName() {return name;}

5 void print() {System.out.println(name);}
6

In the preceding code, name is a property and getName and print are methods.

3.6.2 Groovy Classes

Groovy is extremely similar to Java but always defaults to public.

1 package com.example.mpme;

2 class SmallClass {

3 String name //property

4 def print() { println(name) } //method
5

Groovy also automatically gives you “getter” and “setter” methods for properties, so
writing the getName method would have been redundant.

3.6.3 JavaScript Prototypes

Although JavaScript has objects, it doesn’t have a class keyword. Instead, it uses a
concept called prototype. For example, creating a class looks like the following:

1 function SmallClass() {}
2 SmallClass.prototype.name = "name"

3 SmallClass.prototype.print = function() { print(this.name) }

Here name is a property and print is a method.

10

CHAPTER 3 I THE BASICS

3.6.4 Scala Classes

Scala has a very concise syntax, which puts the properties of a class in parentheses.
For example:

1 class SmallClass(var name:String) {
2 def print = println(name)

3}

3.6.5 Creating a New Object

In all four languages, creating a new object uses the new keyword. For example:

1 sc = new SmallClass();

3.7 Comments

As a human, it is sometimes useful for you to leave notes in your source code for other
humans—and even for yourself, later. We call these notes comments. You write
comments thus:

String gold = "Au"; // this is a comment
String a = gold; // a is now "Au"
String b = a; // b is now "Au"
b = "Br";
/* b is now "Br".

this is still a comment */

SV B~ W N R

Those last two lines demonstrate multiline comments. So, in summary,
e Two forward slashes denote the start of a single-line comment.
e Slash-asterisk marks the beginning of a multiline comment.
e Asterisk-slash marks the end of a multiline comment.

Comments are the same in all languages covered in this book.

3.8 Summary

In this chapter, you learned the basic concepts of programming.
e Compiling source files into binary files
e How objects are instances of classes
e Primitive types, references, and strings
e Variable assignment

e How source code comments work

11

PART Il

Glorified Calculator

Math is the most basic operation a computer can perform. In fact, in the early
days of computers, it was the only thing they could do. A computer was basically
a glorified calculator. So, it makes sense then that one of the first things a
programmer learns is math.

However, unlike most books, this one is going to teach using interesting
concepts. Instead of employing abstract or boring concepts, I'm going to talk
about zombies, vampires, and various other lethal monsters.

= S
SRS bR
2 ET g |
3 vp- S
“an g S :
§.§g~;.‘ g q
ER g - 1
iathr=e 1

oy

A '?'t‘ 3 4
‘?N_

Figure 1. Dragon

CHAPTER 4

Math

(Or Maths, if you prefer.)

4.1 Adding, Subtracting, Etc.

Your friend Bob was just bitten by a zombie but escaped alive. Unfortunately, there is now
one more zombie to worry about.

1 zombies = zombies + 1;

There’s a shorter way to write the same thing (and we are pressed for time here; the
zombies are coming).

1 zombies += 1;

Actually, there’s an even shorter way to write this, and it’s call the increment operator.
1 zombies++;

Luckily, there’s also a decrement operator (to use when we kill a zombie).
1 zombie--;

Adding and subtracting are easy enough, but what about their cousins, multiplying
and dividing? Luckily these symbols are the same in virtually every programming
language: * and /.

1 int legs = zombies * 2;
2 int halfZombies = zombies / 2;

Numbers written in Java are of type int by default. But what if we want to deal with
fractions (such as one-third)?

1 float oneThirdZombies = zombies / 3.0f;

© Adam L. Davis 2016 15
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_4

CHAPTER 4 © MATH

No, 3.0f is not a typo. The f makes 3 a float. You can use lower- or uppercase letters
(D means double; F means float; and L means long).

This is where math starts to get tricky. To engage float division (remember, float is
an imprecise number), we need 3 to be a float. If we instead wrote zombies / 3, this
would result in integer division, and the remainder would be lost. For example, 33 / 3is 10.

MODULO

You don’t really need to understand Modulo, but if you want to, keep reading.
Imagine that you and three buddies want to attack a group of zombies. You have to
know how many each of you has to kill, so that each of you Kills an equal number of
zombies. For this you do integer division.

1

int numberToKill = zombies / 4;

But you want to know how many will be left over. For this, you require modulo (%):

1

int leftOverZombies = zombies % 4;

This gives you the remainder of dividing zombies by four.

4.2 More Complex Math

If you want to do anything other than add, subtract, multiply, divide, and modulo, you
will have to use the java.util.Math class.

Let’s say you want to raise a number to the power of 2. For example, if you want to
estimate the exponentially increasing number of zombies, as follows:

1 double nextYearEstimate = Math.pow(numberOfZombies, 2.0d);

This type of method is called a static method. (Don’t worry, you'll learn more about
this later.) Here’s a summary of the most commonly used methods in java.util.Math.

16

abs: Returns the absolute value of a value
min: The minimum of two numbers
max: The maximum of two numbers

pow: Returns the value of the first argument raised to the power of
the second argument

sqrt: Returns the correctly rounded positive square root of a
double value

cos: Returns the trigonometric cosine of an angle

CHAPTER 4 © MATH

e sin:Returns the trigonometric sine of an angle

e tan:Returns the trigonometric tangent of an angle

0 For a list of all the methods in Math, see the Java docs.’

a¢ Sine If you're unfamiliar with sine and cosine, they are very useful whenever you
want to draw a circle, for example. If you’re on your computer right now, and want to learn
more about sine and cosine, please look at this animation? referenced in the footnote at the
end of this page and keep watching it until you understand the sine wave.

4.3 Random Numbers

The easiest way to create a random number is to use the Math.random() method.

The random() method returns a double value greater than or equal to zero and less
than one.

For example, to simulate a roll of the dice (to determine who gets to deal with the
next wave of zombies), use the following:

1 int roll = (int) (Math.random() * 6);

This would result in a random number from 0 to 5.
JavaScript also has a Math.random() method. For example, to get a random integer
between min (included) and max (excluded) you would do the following:

1 Math.floor(Math.random() * (max - min)) + min;

However, if you want to create lots of random numbers in Java, it’s better to use the
java.util.Random class instead. It has several different methods for creating random
numbers, including:

e nextInt(int n): Arandom number from 0 to n (not including n).

e nextInt(): Arandom number uniformly distributed across all
possible int values

e nextlong(): Same as nextInt() but for long
e nextFloat(): Same as nextInt() but for float

'http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html.
*https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve_drawing_
animation.gif.

17

http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html
https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve_drawing_animation.gif
http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html
https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve_drawing_animation.gif
https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve_drawing_animation.gif

CHAPTER 4 © MATH

e nextDouble(): Same as nextInt() but for double
e nextBoolean(): True or false

e nextBytes(byte[] bytes): Fills the given byte array with r
andom bytes

You must first create a new Random object, then you can use it to create random

numbers, as follows:

Random randy = new Random();
2 int roll6 = randy.nextInt(6) + 1; // 1 to 6
3 dint roll12 = randy.nextInt(12) + 1; // 1 to 12

Now you can create random numbers and do math with them. Hurray!

Seeds If you create a Random with a seed (e.g., new Random(1234)), it will always
generate the same sequence of random numbers when given the same seed.

4.4 Summary

In this chapter, you learned how to program math, such as:
e Howto add, subtract, multiply, divide, and modulo
e Use the Math library in Java

e Create random numbers

18

CHAPTER 5

Arrays, Lists, Sets, and Maps/

So far, I've only talked about single values, but in programming, you often have to work
with large collections of values. For this, we have many data structures that are built into
the language. These are similar for Java, Groovy, Scala, and even JavaScript.

5.1 Arrays

An array is a fixed size collection of data values. Honestly, you probably won’t use an
array very often, but it’s an important concept to learn.

You declare an array-type in Java by appending [] to the type. For example, an array
of ints is defined as int[].
1 int[] vampireAges = new int[10]; // ten vampires

Accessing the values in an array uses the same square-bracket syntax, such as

1 vampireAges[0] = 1565; // first vampire

As you can see, the first index of an array is zero. Things tend to start at zero when
programming; try to remember this.

Q¢ Patient 0 Here’s a helpful metaphor: the first person to start an outbreak
(a zombie outbreak, for example) is known as patient zero, not patient one. Patient one is
the second person infected.

This also means that the last index of the array is always one less than the size of the
array. This is also true for lists.

1 vampireAges[9] = 442; // last vampire

You can reassign and access array values just like any other variable.

© Adam L. Davis 2016 19
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_5

CHAPTER 5 ' ARRAYS, LISTS, SETS, AND MAPS

1 int year = 2016; // current year?
2 int firstVampBornYear = year - vampireAges[0];

You can also declare arrays of objects as well. In this case, each element of the array
is a reference to an object in memory.

1 Vampire[] vampires = new Vampire[10]; // Vampire array with length 10

You can also populate your array directly, such as if you're creating an array of
strings, for example.

1 String[] names = {"Dracula", "Edward"};

Unfortunately, arrays are difficult to use in Groovy and the Array object in JavaScript
is more like a Java List. Java arrays are a somewhat low-level structure, used only for
performance reasons.

5.2 Lists

Of course, we don’t always know how many elements we need to store in an array. For
this reason (and many others), programmers invented List, a resizable collection of
ordered elements.

In Java, you create List in the following way:

1 List<Vampire> vampires = new Arraylist<>();

The angle-brackets (<>) define the generic type of the list—what can go into the list.
You can now add vampires to this list all day, and it will expand, as necessary, in the
background.

You add to List like this:

1 vampires.add(new Vampire("Count Dracula", 1897));

List also contains tons of other useful methods, including:
e size(): Gets the size of List
e get(int index): Gets the value at that index
e remove(int index): Removes the value at that index
e remove(Object o):Removes the given object
e isEmpty():Returns true onlyif List is empty

e clear(): Removes all values from List

20

CHAPTER 5 * ARRAYS, LISTS, SETS, AND MAPS

Qt In Java, List has many different implementations, but we’ll just focus on two
(don’t worry about the details here).
e java.util.Arraylist

e java.util.LinkedlList

The only difference you should care about is that, in general, LinkedList grows faster,
while ArrayList’s get() method is faster.

You'll learn how to loop through lists, arrays, and sets (and what “loop” means) in the
next chapter. For now, just know that lists are a fundamental concept in programming.

5.2.1 Groovy Lists

Groovy has a simpler syntax for creating lists, which is built into the language.

1 def list = []

2 list.add(new Vampire("Count Dracula", 1897))
3 //or

4 list << new Vampire("Count Dracula", 1897)

5.2.2 Scala Lists

In Scala, you create a list and add to a list in a slightly different way:

1 war list = List[Vampire]();
2 list :+ new Vampire("Count Dracula", 1897)

Also, this actually creates a new list, instead of modifying the existing list. This is
because the default List in Scala is immutable, meaning it cannot be modified. Although
this may seem strange in conjunction with functional programming, it makes parallel
programming (programming for multiple processors) easier.

5.2.3 JavaScript Arrays

As mentioned earlier, JavaScript uses Array’ instead of List.

'https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/
Array.

21

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

CHAPTER 5 ' ARRAYS, LISTS, SETS, AND MAPS

Arrays can be created much like lists in Groovy. However, the methods available are
somewhat different. For example, push is used instead of add.

1 def array = []
2 array.push(new Vampire("Count Dracula", 1897))

You can also declare the initial values of Array. For example, the following two lines
are equivalent:

1 def years
2 def years

[1666, 1680, 1722]
new Array(1666, 1680, 1722)

To add to the confusion, arrays in JavaScript can be accessed much like Java arrays.
For example:

1 def firstYear = years[0]
2 def size = years.length

5.3 Sets

Set is much like List, but each value or object can only have one instance in Set.
Set has many of the same methods as List. In particular, it is missing the methods
that use an index, because Set is not necessarily in any particular order.

Set<String> dragons = new HashSet<>();
dragons.add("Lambton");
dragons.add("Deerhurst");
dragons.size(); // 2
dragons.remove("Lambton");
dragons.size(); // 1

UV b~ W N R

In Java, there is such a thing as SortedSet, which is implemented by TreeSet. For
example, let’s say you wanted a sorted list of names, as follows:

SortedSet<String> dragons = new TreeSet<>();
dragons.add("Lambton");
dragons.add("Smaug");
dragons.add("Deerhurst");
dragons.add("Norbert");
System.out.println(dragons);

// [Deerhurst, Lambton, Norbert, Smaug]

N ouviph wN R

TreeSet will magically always be sorted in the proper order.

22

CHAPTER 5 * ARRAYS, LISTS, SETS, AND MAPS

Q(u Okay, it’s not really magic. The object to be sorted must implement the comparable
interface, but you haven’t learned about interfaces yet.

JavaScript does not yet have a built-in Set class.

5.4 Maps

Map is a collection of keys associated with values. It may be easier to understand with an
example.

Map<String,String> map = new HashMap<>();
map.put("Smaug", "deadly");
map.put("Norbert", "cute");

map.size(); // 2

map.get("Smaug"); // deadly

Ui W N

Map also has the following methods:

e containsKey(Object key): Returns true, if this map contains a
mapping for the specified key

e containsValue(Object value): Returns true, if this map maps
one or more keys to the specified value

e keySet(): Returns a Set view of the keys contained in this map

e putAll(Map m): Copies all of the mappings from the specified
map to this map

e remove(Object key): Removes the mapping for a key from this
map, if it is present

5.4.1 Groovy Maps
Just as for List, Groovy has a simpler syntax for creating and editing Map.
1 def map = ["Smaug": "deadly"]

2 map.Norbert = "cute"
3 println(map) // [Smaug:deadly, Norbert:cute]

5.4.2 Scala Maps

Scala’s Map syntax is also somewhat shorter.

1 wvar map = Map("Smaug" -> "deadly")

23

CHAPTER 5 ' ARRAYS, LISTS, SETS, AND MAPS

2 var map2 = map + ("Norbert" -> "cute")
3 println(map2) // Map(Smaug -> deadly, Norbert -> cute)

As with List, Scala’s default Map is also immutable.

5.4.3 JavaScript Maps

JavaScript does not yet have a built-in Map class, but it can be approximated by using the
built-in Object? syntax. For example:

1 def map = {"Smaug": "deadly", "Norbert": "cute"}

You could then use either of the following to access map values: map . Smaug or
map["Smaug"].

5.5 Summary

This chapter introduced you to the following concepts:
e Arrays: Primitive collections of data
e Lists: An expandable collection of objects or values
e Sets: A collection of unique objects or values

e Maps: A dictionary-like collection

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Object.

24

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object

CHAPTER 6

Conditionals and Loops)

To rise above the label of calculator, a programming language must have conditional
statements and loops.

A conditional statement is a statement that may or may not execute, depending on
the circumstances.

A loop is a statement that gets repeated multiple times.

6.1 If, Then, Else

The most basic conditional statement is the if statement. It is the same in all languages
covered in this book. For example:

1 if (vampire) { // vampire is a boolean
2 uselWoodenStake();
3}

Curly brackets ({}) define a block of code (in Java, Scala, Groovy, and JavaScript). To
define what should happen if your condition is false, you use the else keyword.

1 if (vampire) {

2 uselWoodenStake();
3 } else {

4 useAxe();

5}

Actually, this can be shortened, because we only have one statement per condition.

1 if (vampire) useWoodenStake();
2 else useAxe();

But it’s generally better to use the curly-bracket style in Java. If you have multiple
conditions you have to test for, you can use the else if style, such as the following:

1 if (vampire) uselWoodenStake();
2 else if (zombie) useBat();
3 else useAxe();

© Adam L. Davis 2016 25
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_6

CHAPTER 6 "' CONDITIONALS AND LOOPS

6.2 switch Statements

Sometimes you have so many conditions that your else if statements span several
pages. In this case, you might consider using the switch keyword. It allows you to test for
several different values of the same variable. For example:

switch (monsterType) {

case "Vampire": useWoodenStake(); break;
case "Zombie": useBat(); break;

case "Orc": shoutInsult();

default: useAxe();

}

The case keyword denotes the value to be matched.

The break keyword always causes the program to exit the current code block. This is
necessary in a switch statement; otherwise, every statement after the case will be executed.
For example, when monsterType is "Orc", shoutInsult and useAxe are executed.

The default keyword denotes the code to execute if none of the cases is matched.

It is much like the final else block of an if/else block.

AUV B WN B

%There is more to switch statements, but this involves concepts I'll cover later on, so
we’ll return to this topic.

6.3 Boolean Logic

Figure 6-1. Formal Logic—XKCD 1033 (courtesy http://xkcd.com/1033/)

26

http://xkcd.com/1033/

CHAPTER 6 © CONDITIONALS AND LOOPS
Computers use a special kind of math called Boolean logic (it’s also called Boolean algebra).
All you really need to know are the following three Boolean operators and six comparators:
&8—AND: True only if left and right values are true.
| | —ORy if either left or right value is true.

1 —NOT: Negates a Boolean (true becomes false; false
becomes true.

==: Equals

=: Does not equal
<:Less than

>: Greater than

<=: Less than or equal
>=: Greater than or equal

Conditions (such as if) operate on Boolean values (true/false)—the same
boolean type that you learned about in Chapter 3. When used properly, all the preceding
operators result in a Boolean value.

For example:

1 if (age > 120 &8 skin == Pale && !winkled) {
2 probablyVampire();
3}

6.4 Looping

The two simplest ways to loop are the while loop and do/while loop.
The while loop simply repeats until the loop condition becomes false.

boolean repeat = true;

while (repeat) {
doSomething();
repeat = false;

Ui W N

}

The preceding would call the doSomething() method once. The loop condition in
the preceding code is repeat. This is a simple example. Usually, the loop condition would
be something more complex.

The do loop is like the while loop, except that it always goes through at least one
time. For example:

1 boolean repeat = false;
2 do {

3 doSomething();
4 '} while(repeat);

27

http://dx.doi.org/10.1007/978-1-4842-2490-8_3

CHAPTER 6 "' CONDITIONALS AND LOOPS

It’s often helpful to increment a number in your loop, for example:

1 int i =o0;

2 while (i < 10) {

3 doSomething(i);

4 i++;

5)
The preceding loop can be condensed using the for loop.
for (int i =0; i< 10; i++) {

2 doSomething(i);

3}

The for loop has an initiation clause, a loop condition, and an increment clause.
This style of loop is useful for looping through an array with an index. For example:

String[] strArray = {"a", "b", "c"};
2 for (int i = 0; i < strArray.length; i++)
3 System.out.print(strArray[i]);

This would print “abc.” The preceding loop is equivalent to the following:

int i = 0;
while (i < strArray.length) {
String str = strArray[i];
System.out.print(str);
i++;

AUV B~ W N R

}

In Java, you can write for loops in a more concise way for an array or collection (list
or set). For example:

1 String[] strArray = {"a", "b", "c"};
2 for (String str : strArray)
3 System.out.print(str);

This is called a for each loop. Note that it uses a colon instead of a semicolon.

6.5 Summary

In this chapter, you learned about the following:
e Usingthe if statement
e How to use Boolean logic
e switch statements

e Using for, do, and while loops

28

CHAPTER 7

Methods

A method is a series of statements combined into one block inside a class and given a
name. In the Cold War days, these were called sub-routines, and many other languages
call them functions. However, the main difference between a method and a function is
that a method has to be associated with a class, whereas a function does not.

7.1 Call Me

Methods exist to be called. You can think of a method as a message that is sent or a
command given. To call a method (also known as invoking a method), you simply write
the name of the object, a dot, then the method name. For example:

1 Dragon dragon = new Dragon();
dragon.fly(); // dragon is the object, and fly is the method

The fly method would be defined within the Dragon class.

public void fly() {
// flying code

N

3}

Qc Void In Java, void means that no result is returned.

Methods can also have parameters. A parameter is a value (or reference value) that
is part of a method call. Together, the method’s name and parameters are called the
method signature. For example, the following method has two parameters:

1 public void fly(int x, int y) {

2 // fly to that x, y coordinate.
3}
© Adam L. Davis 2016 29

A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_7

CHAPTER 7 ©' METHODS

7.1.1 Non-Java

Other languages define methods (or functions) differently. For example, in Groovy, you
can use the def keyword to define a method (in addition to Java’s normal syntax), as
follows:

1 def fly() { println("flying") }

Scala also uses the def keyword to define a method, but you also need an equal (=) sign.
1 def fly() = { println("flying") }

JavaScript uses the function keyword to define a function:

1 function fly() { alert("flying") }

7.2 Break It Down

Methods also exist to organize your code. One rule of thumb is to never have a method
that is longer than one screen. It makes no difference to the computer, but it makes all the
difference to humans (including you).

It’s also very important to name your method well. For example, a method that fires
an arrow should be called “fireArrow,” and not “fire,” “arrow,” or “arrowFartBigNow.”

This may seem like a simple concept, but you might be surprised by how many

people fail to grasp it.

7.3 Return to Sender

Often, you will want a method to return a result. In Java, you use the return keyword to
do this. For example:

1 public Dragon makeDragonNamed(String name) {
2 return new Dragon(name);

3}

Once the return statement is reached, the method is complete. Whatever code
called the method will resume execution.

In some languages, such as Groovy and Scala, the return keyword is optional.
Whatever value is put on the last line will get returned. For example (Groovy):

1 def makeDragonNamed(name) {
2 new Dragon(name)

3}

30

CHAPTER 7 © METHODS

7.4 Static

In Java, a static method is a method that is not linked to an object instance. However, it
must be part of a class.

For example, the random() method in the java.util.Math class we learned about
earlier is a static method.

To declare a static method, you simply add the word static, as in the following:

1 public static String makeThemFight(Dragon d, Vampire v) {
2 // a bunch of code goes here.

3 1}

Because Java is an object-oriented programming language (OOP), in theory, static
methods should be used sparingly, because they are not linked to any object. However,
in real life, you will see them a lot.

7.5 Varargs

Varargs, or “variable arguments,” allow you to declare a method’s last parameter with an
ellipsis (. . .), and it will be interpreted to accept any number of parameters (including zero)
and convert them into an array in your method. For example, see the following code:

1 woid printSpaced(Object... objects) {
2 for (Object o : objects) System.out.print(o + " ");
3}

Putting it all together, you can have the following code (with output in comments):

1 printSpaced("A", "B", "C"); // ABC
2 printSpaced(1, 2, 3); // 123

7.6 Main Method

Now that you know about static methods, you can finally run a Java program (sorry it took
so long). Here’s how you create an executable main method in Java:

import static java.lang.System.out;
/** Main class. */
public class Main {
public static void main(String ... args) {
out.println("Hello World!");
}

~NouvihsWN R

31

CHAPTER 7 ©' METHODS

Then, to compile it, open your command prompt or terminal and type the following:

1 javac Main.java
2 java Main

Or, in NetBeans, do the following:
e Right-click the Main class.

e Choose Run File.

7.7 Exercises

f Try out methods After you've created the Main class, try adding some methods
to it. Try calling methods from other methods and see what happens.

f Lists, Sets, and Maps In Java, all of these data structures are under the
java.util package. So, start by importing this whole package:

1 import java.util.*;

Then go back to Chapter 5 and try out some of the code there.

7.8 Summary

This chapter explained the concept of methods and how they should be used.
We also put together everything you've learned up to this point and made a small
Java application.

32

http://dx.doi.org/10.1007/978-1-4842-2490-8_5

PART il

Polymorphic Spree

The title of this part is a play on the name of the band Polyphonic Spree.!

The term polymorphism refers to a principle in biology according to which
an organism or species can have many different forms or stages. This principle
can also be applied to object-oriented programming (OOP) languages such as
Java. Subclasses of a class can define their own unique behaviors and yet share
some of the same functionality of the parent class.

280000)

o //

d 'J))J(}?/?,H_‘y/ i)

Figure 1. Mythical creatures (clockwise from bottom-left): unicorn, griffon,
phoenix, dragon, roc (center)

'www. thepolyphonicspree.com/.

http://www.thepolyphonicspree.com/

CHAPTER 8

Inheritance

Inheritance is a good way to share functionality between objects. When a class has a
parent class, we say it inherits the fields and methods of its parent.
In Java, you use the extends keyword to define the parent of a class. For example:

1 public class Griffon extends FlyingCreature {

2}

Another way to share functionality is called composition. This means that an object
holds a reference to another object and uses it to do things. For example:

1 class Griffon {

2 Wing leftWing = new Wing()
3 Wing rightWing = new Wing()
4 def fly() {

5 leftWing.flap()

6 rightWing.flap()

7 }

8 }

This way, you can also have a Bird class that also uses the Wing class, for example.

8.1 Objectify

What is an object anyway? An object is an instance of a class (in Java, Groovy, and Scala).
In Java, classes have constructors, which can have multiple parameters for
initializing the object. For example, see the following:

1 class FlyingCreature {

2 String name;

3 // constructor

4 public FlyingCreature(String name) {
5 this.name = name;

6 }

7

© Adam L. Davis 2016 35

A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_8

CHAPTER 8 " INHERITANCE

The constructor of FlyingCreature has one parameter, name, which is stored in the
name field. A constructor must be called using the new keyword, to create an object, for
example:

1 String name = "Bob";
2 FlyingCreature fc = new FlyingCreature(name);

Once an object is created, it can be passed around (this is called a pass by reference).
Although String is a special class, it is a class, so you can pass around an instance of it, as
shown in the preceding code.

8.1.1 JavaScript

In JavaScript, a constructor is a function used to define a prototype. Inside the
constructor, the prototype is referred to using the this keyword. For example, you could
define a Creature in JavaScript, as follows:

1 function Creature(n) {

2 this.name = n;

3}

4 var bob = new Creature('Bob');

Note All functions and objects in JavaScript have a prototype.

8.2 Parenting 101

A parent class defines shared functionality (methods) and state (fields) that are common
to multiple classes.

For example, let’s create a FlyingCreature class that defines a f1y() method and
has a name.

1 class FlyingCreature {

2 String name;

3 public FlyingCreature(String name) {

4 this.name = name;

5 }

6 public void fly() {

7 System.out.println(name + " is flying");
8 }

9 }

10 class Griffon extends FlyingCreature {

11 public Griffon(String n) { super(n); }
12}

13 class Dragon extends FlyingCreature {

36

CHAPTER 8 " INHERITANCE

14 public Dragon(String n) { super(n); }

15 }

16 public class Parenting {

17 public static void main(String ... args) {
18 Dragon d = new Dragon("Smaug");

19 Griffon g = new Griffon("Gilda");
20 d.fly(); // Smaug is flying

21 g.fly(); // Gilda is flying

22 }

23}

There are two classes in the preceding code, Griffon and Dragon, that extend
FlyingCreature. FlyingCreature is sometimes referred to as the base class. Griffon
and Dragon are referred to as subclasses.

Keep in mind that you can use the parent class’s type to refer to any subclass. For
example, you can make any flying creature fly, as follows:

1 FlyingCreature creature = new Dragon("Smaug");
2 creature.fly(); // Smaug is flying

This concept is called extension. You extend the parent class (FlyingCreature,

in this case).

8.2.1 JavaScript

In JavaScript, we can use prototypes to extend functionality.
For example, let’s say we have a prototype called Undead.

1 function Undead() {

2 this.dead = false;

3 this.living = false;
4 }

Now let’s create two other constructors, Zombie and Vampire.

function Zombie() {
Undead.call(this);
this.deseased = true;
this.talk = function() { alert("BRAINS!") }

1
2
3
4
5
6 Zombie.prototype = Object.create(Undead.prototype);
7
8
9
0

}
function Vampire() {
Undead.call(this);
1 this.pale = true;
11 this.talk = function() { alert("BLOOD!") }

12}
13 Vampire.prototype = Object.create(Undead.prototype);

37

CHAPTER 8 " INHERITANCE

Note how we set Zombie’s and Vampire’s prototype to an instance of the Undead
prototype. This allows zombies and vampires to inherit the properties of Undead, while
having different talk functions, as follows:

var zombie = new Zombie();
var vamp = new Vampire();
zombie.talk(); //BRAINS
zombie.deseased; // true
vamp.talk(); //BLOOD
vamp.pale; //true
vamp.dead; //false

N ouviph wWwN R

8.3 Packages

In Java (and related languages, Groovy, and Scala), a package is a namespace for classes.
Namespace is a just shorthand for a bin of names. Every modern programming language
has some type of namespace feature. This is necessary, owing to the nature of having lots
and lots of classes in typical projects.

Asyoulearned in Chapter 3, the first line of a Java file defines the package of the
class, for example:

1 package com.github.modernprog;

Also, there is a common understanding that a package name corresponds to a URL
(github.com/modernprog, in this case). However, this is not necessary.

8.4 Public Parts

You might be wondering why the word public shows up everywhere in the examples so
far. The reason has to do with encapsulation. Encapsulation is a big word that just means
“a class should expose as little as possible to get the job done” (some things are meant
to be private). This helps reduce complexity of code and, therefore, makes it easier to
understand and think about.

There are three different keywords in Java for varying levels of “exposure.”

e Private: Only this class can see it.
e Protected: Only this class and its descendants can see it.

e Public: Everyone can see it.

O*There’s also “default” protection (absent of a keyword), which limits use to any class

in the same package.

38

http://dx.doi.org/10.1007/978-1-4842-2490-8_3

CHAPTER 8 " INHERITANCE

This is why classes tend to be declared public, because, otherwise, their usage
would be very limited. However, a class can be private, for example, when declaring a
class within another class, as follows:

1 public class Griffon extends FlyingCreature {
2 private class GriffonWing {}

3 1}

8.4.1 JavaScript

JavaScript does not have the concept of packages, but, instead, you must rely on scope.
Variables are only visible inside the function they were created in, except for global
variables.

8.5 Interfaces

An interface declares method signatures that will be implemented by classes that
extend the interface. This allows Java code to work on several different classes without
necessarily knowing what specific class is “underneath” the interface.

For example, you could have an interface with one method, as follows:

1 public interface Beast {
int getNumberOfLegs(); // all interface methods are public

2
3}
Then you could have several different classes that implement that interface.

public class Griffon extends FlyingCreature implements Beast {
public int getNumberOflLegs() { return 2; }

public class Unicorn implements Beast {
public int getNumberOfLegs() { return 4; }
}

SV B~ W N

Note JavaScript does not have an equivalent concept to interface.

8.6 Abstract Class

An abstract is a class that can have abstract methods but cannot have instances. It is
something like an interface with functionality, however, a class can only extend one
superclass, while it can implement multiple interfaces.

39

CHAPTER 8 " INHERITANCE

For example, to implement the preceding Beast interface as an abstract class, you
can do the following:

1 public abstract class Beast {
2 public abstract int getNumberOfLegs();

3}

Then you could add non-abstract methods and/or fields.

8.7 Enums

In Java, the enum keyword creates a type-safe, ordered list of values. For example:

1 public enum BloodType {
2 A, B, AB, 0, VAMPIRE, UNICORN;

3}
An enum variable can only point to one of the values in the enum. For example:
1 BloodType type = BloodType.A;

The enum is automatically given a bunch of methods, such as

e values(): Gives you an array of all possible values in the enum
(static)

e valueOf(String): Converts the given string into the enum value
with the given name

e name(): An instance method on the enum that gives its name

Also, enums have special treatment in switch statements. For example, in Java, you
can use an abbreviated syntax (assuming type is a BloodType).

1 switch (type) {

2 case VAMPIRE: return vampire();
3 case UNICORN: return unicorn();
4 default: return human();

5)

8.8 Annotations

Java annotations allow you to add meta-information to Java code that can be used by the
compiler, various APIs, or even your own code at runtime.

40

CHAPTER 8 " INHERITANCE

The most common annotation you will see is the @0verride annotation, which
declares to the compiler that you are overriding a method. For example:

1 @0verride

2 public String toString() {

3 retuxrn "my own string";
4}

This is useful, because it will cause a compile-time error if you mistype the method
name, for example.

Other useful annotations are those in javax.annotation, such as @Nonnull and @
Nonnegative, which declare your intentions.

Annotations such as @Autowired and @Inject are used by direct-injection
frameworks such as Spring and Google Guice,' repectively, to reduce “wiring” code.

8.9 Autoboxing

Although Java is an object-oriented language, this sometimes conflicts with its primitive
types (int, long, float, double, etc.). For this reason, Java added autoboxing and
unboxing to the language.

8.9.1 Autoboxing

The Java compiler will automatically wrap a primitive type in the corresponding object
when it’s necessary, for example, when passing in parameters to a function or assigning a
variable, as in the following: Integer number = 1.

8.9.2 Unboxing

This is simply the reverse of autoboxing. The Java compiler will unwrap an object to the
corresponding primitive type, when possible. For example, the following code would
work: double d = new Double(1.1) + new Double(2.2).

8.10 Summary

After reading this chapter, you should understand OOP, polymorphism, and the
definitions of the following:

e Extension and composition

e Publicvs. private vs. protected

e (lass, abstract class, interface, enum
e Annotations

e Autoboxing and unboxing

'http://code.google.com/p/google-guice/.

41

http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/

CHAPTER 9

Design Patterns

In object-oriented programming (OOP), design patterns are useful organizations of state
and behavior that make your code more readable, testable, and extensible.

9.1 Observer

The observer pattern allows you to broadcast information from one class to many others,
without them having to know about each other directly.

It is often used with events. For example, the KeyListener, MouseListener, and many
other “Listener” interfaces in Java Swing implement the observer pattern and use events.
Another example of this pattern is the Observable class and Observer interfaces

supplied in Java. Here is a simple example that simply repeats the same event forever:

1 dimport java.util.Observable;

2

3 public class EventSource extends Observable implements Runnable {
4 @0verride

5 public void run() {

6 while (true) {

7 notifyObservers("event");

8 }

9 }

10 }

Although the event is simply a string in this example, it could be of any type.
The following class implements the Observer interface and prints out any events of
type String:

1 import java.util.Observable;
2 import java.util.Observer; /* this is Event Handler */
3

© Adam L. Davis 2016 43
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_9

CHAPTER 9 I DESIGN PATTERNS

O W oo~N OVl b

}

public class StringObserver implements Observer {
public void update(Observable obj, Object event) {

if (event instanceof String) {
System.out.println("\nReceived Response:
}

+ event);

To run this example, simply do the following:

coO~N YU B~ W N R

final EventSource eventSource = new EventSource();

// create an observer

final StringObserver stringObserver = new StringObserver();
// subscribe the observer to the event source
eventSource.addObserver (stringObserver);

// starts the event thread

Thread thread = new Thread(eventSource);

thread.start();

92 MVC

Model-view-controller (MVC) is possibly the most popular software design pattern
(Figure 9-1). As the name suggests, it consists of three major parts:

44

Model: The data or information being shown and manipulated
View: What actually defines how the model is shown to the user

Controller: Defines how actions can manipulate the model

CHAPTER 9 " DESIGN PATTERNS

i .
. Model),
e L
Manipulates '4',1' xh Updates
4 ~ 4
L '\—l': —_—

{ Controller }] .
“'\-__-__ _'___’-" —\-__‘-r —
— -
b
. r," Displays
Uses \

-
. -
s ’ .
o]

A
User

Figure 9-1. Model-view-controller

This design allows the controller, model, and view to know very little about each
other. This reduces coupling—the degree to which different components of the software
rely on other components. When you have low coupling, your software is easier to
understand and easier to extend.

We will look at a great example of MVC when I talk about grails.

9.3 DSL

A domain specific language (DSL) is a custom programming language made for a specific
domain. For example, you can think of HTML as a DSL for displaying web pages.

Some languages allow you such freedom that you can create a DSL inside the
language. For example, Groovy and Scala allow you to override the math symbols (+, -, etc.).
The other freedoms of these languages (optional parentheses and semicolons) allow for
DSL-like interfaces. We call these DSL-like interfaces fluent interfaces.

You can also create fluent interfaces in Java and other languages.

45

CHAPTER 9 I DESIGN PATTERNS

9.3.1 Closures

Within Groovy, you can take a block of code (a closure) as a parameter and then call it,
using a local variable as a delegate. For example, imagine that you have the following
code for sending SMS texts:

1 class SMS {

2 def from(String fromNumber) {

3 // set the from

4 }

5 def to(String toNumber) {

6 // set the to

7 }

8 def body(String body) {

9 // set the body of text
10 }
11 def send() {
12 // send the text.
13 }
14}

In Java, you'd have to use this the following way:

1 SMSm = new SMS();
2 m.from("555-432-1234");
3 m.to("555-678-4321");
4 m.body("Hey there!");

5 m.send();

In Groovy, you can add the following static method to the SMS class for DSL-like
usage:

1 def static send(block) {

2 SMS m = new SMS()
3 block.delegate = m
4 block()

5 m.send()

6 }

This sets the SMS object as a delegate for the block, so that methods are forwarded to
it. With this you can now do the following:

1 SMS.send {

2 from '555-432-1234'
3 to '555-678-4321'
4 body 'Hey there!'
6 }

46

CHAPTER 9 " DESIGN PATTERNS

9.3.2 Overriding Operators

In Scala or Groovy, you could create a DSL for calculating speeds with specific units, such
as meters per second.

val time 20 seconds

val dist 155 meters

val speed = dist / time
println(speed.value) // 7.75

Y S N

By overriding operators, you can constrain users of your DSL to reduce errors. For
example, time/dist would cause a compilation error in this DSL.
Here’s how you would define this DSL in Scala:

1 class Second(val value: Float) {}

2 class MeterPerSecond(val value: Float) {}
3 class Metexr(val value: Float) {

4 def /(sec: Second) = {

5 new MeterPerSecond(value / sec.value)
6 }

7 0}

8 class EnhancedFloat(value: Float) {

9 def seconds = {

10 new Second(value)

11 }

12 def meters = {

13 new Meter(value)

14 }

15

16 implicit def enhanceFloat(f: Float) = new EnhancedFloat(f)

Q Scala has the implicit keyword, which allows the compiler to do implicit conversions

for you.

Notice how the divide / operator is defined just like any other method.

0 In Groovy, you overload operators by defining methods with special names’ such as

plus, minus, multiply, div, etc.

'http://groovy.codehaus.org/Operator+Overloading.

47

http://groovy.codehaus.org/Operator+Overloading
http://groovy.codehaus.org/Operator+Overloading

CHAPTER 9 I DESIGN PATTERNS

9.4 Actors

The actor design pattern is a useful pattern for developing concurrent software. In this
pattern, each actor executes in its own thread and manipulates its own data. The data
cannot be manipulated by anyone else. Messages are passed between actors to cause
them to change data (Figure 9-2).

::I - Messages - I::l
— — |

,rJI'H, i)

Actorl Actor2

l'l'l lIIII 'll ’
-~ T T T
{' Actorl's Data ';. .:’ Actor2's Data ‘:.
-h'“'ﬁ-___ __-“"“ e _ﬂ_-—""ll

Figure 9-2. Actors

Note When data can only be changed by one thread at a time, we call it thread-safe.

There are many implementations of this pattern that you can use, including the
following:

e Akka?
e Jetlang®
e FunctionalJava*

e GPars®

*http://akka.io/.
*https://code.google.com/p/jetlang/.
*http://functionaljava.org/.
http://gpars.codehaus.org/.

48

http://akka.io/
https://code.google.com/p/jetlang/
http://functionaljava.org/
http://gpars.codehaus.org/
http://akka.io/
https://code.google.com/p/jetlang/
http://functionaljava.org/
http://gpars.codehaus.org/

CHAPTER 10

Functional Programming)

Functional programming (FP) is a programming style that focuses on functions and
minimizes changes of state (using immutable data structures). It is closer to expressing
solutions mathematically, rather than through step-by-step instructions.

In FP, functions should be “side-effect free” (nothing outside the function is
changed) and referentially transparent (a function returns the same value every time
when given the same arguments).

FP is an alternative to the more common imperative programming, which is closer to
telling the computer the steps to follow.

Although functional-programming could be achieved in Java pre-Java-8,' Java 8
enabled language-level FP support with lambda expressions and functional interfaces.

Java 8, JavaScript, Groovy, and Scala all support functional-style programming,
although they are not FP languages.

Note Prominent functional programming languages such as Common Lisp, Scheme,
Clojure, Racket, Erlang, 0Caml, Haskell, and F# have been used in industrial and commercial
applications by a wide variety of organizations. Clojure? is a Lisp-like language that runs on
the JUM.

10.1 Functions and Closures

Of course, “functions as a first-class feature” is the basis of functional programming.
First-class feature means that a function can be used anywhere a value can be used.
For example, in JavaScript, you can assign a function to a variable and call it

1 wvar func = function(x) { return x + 1; }
2 wvar three = func(2); //3

'http://functionaljava.org/.
*http://clojure.org/.

© Adam L. Davis 2016 49
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_10

http://functionaljava.org/
http://clojure.org/
http://functionaljava.org/
http://clojure.org/

CHAPTER 10 ' FUNCTIONAL PROGRAMMING

Although Groovy doesn’t have first-class functions, it has something very similar:
closures. A closure is simply a block of code wrapped in curly brackets with parameters
defined left of the -> (arrow). For example:

def closr = {x -> x + 1}
2 println(closr(2)); //3

If a closure has one argument, it can be referenced as it in Groovy. For example:
1 def closr = {it + 1}

Java 8 introduced the lambda expression, which is something like a closure that
implements an interface. The main syntax of a lambda expression is “parameters
->body.” The Java compiler uses the context of the expression to determine which
functional interface is being used (and the types of the parameters). For example:

1 Function<Integer,Integer> func = x -> x + 1;
2 int three = func.apply(2);

Here, the functional interface is Function, which has the apply method. The return
value and parameter type of both Integers, thus Integer, Integer, are the generic type
parameters.

a* In Java 8, a functional interface is defined as an interface with exactly one abstract

method. This even applies to interfaces that were created with previous versions of Java.

In Scala, everything is an expression, and functions are a first-class feature. Here’s a
function example in Scala:

1 wvar f= (x: Int) =» x + 1;
2 println(f(2));

Although both Java and Scala are statically typed, Scala actually uses the right-hand
side to infer the type of function being declared, whereas Java does the opposite.

Q In Java, Groovy, and Scala, the return keyword can be omitted, if there is one

expression in the function/closure. However, in Groovy and Scala, the return keyword can
also be omitted, if the returned value is the last expression.

50

CHAPTER 10 © FUNCTIONAL PROGRAMMING

10.2 Map/Filter/etc.

Once you have mastered functions, you quickly realize that you need a way to perform
operations on collections (or sequences or streams) of data.
Because these are common operations, sequence operations, such as map, filter,

reduce, etc., were invented.
We'll use JavaScript for the examples in this section, because it is easier to read, and

the function names are fairly standard across programming languages.
map translates or changes input elements into something else (Figure 10-1).

1 wvar names = persons.map(function(person) { return person.name })

MAP

u

filter gives you a subset of elements (what returns true from some predicate
function [Figure 10-2]).

Figure 10-1. Map

1 wvar adults = persons.filter(function(person) { return person.age >= 18 })

|
I FILTER
B
-

->

Figure 10-2. Filter

51

CHAPTER 10 ' FUNCTIONAL PROGRAMMING

reduce performs a reduction on the elements (Figure 10-3).

1 wvar totalAge = persons.reduce(function(total, p) { return total+p.age }, 0)

* | REDUCE

Figure 10-3. Reduce

limit gives you only the first N elements (Figure 10-4).

LIMIT
>

Figure 10-4. Limit

52

CHAPTER 10 ' FUNCTIONAL PROGRAMMING

concat combines two different collections of elements (Figure 10-5).

|
| |CONCAT

]
il
i)

Figure 10-5. Concat

10.3 Immutability

Immutability and FP go together like peanut butter and jelly. Although it’s not necessary,
they blend nicely.

In purely functional languages, the idea is that each function has no effect outside
itself—no side effects. This means that every time you call a function, it returns the same
value given the same inputs.

To accommodate this behavior, there are immutable data-structures. An immutable
data-structure cannot be directly changed but returns a new data-structure with every operation.

For example, as you learned earlier, Scala’s default Map is immutable.

1 wval map = Map("Smaug" -> "deadly")
val map2 = map + ("Norbert" -> "cute")
3 println(map2) // Map(Smaug -> deadly, Norbert -> cute)

N

So, in the preceding, map would remain unchanged.
Each language has a keyword for defining immutable variables (values).

e Scala uses the val keyword to denote immutable values, as
opposed to var, which is used for mutable variables.

e Java has the final keyword for declaring immutable variables.

e Inaddition to the final keyword, Groovy includes the
@Immutable annotation?® for declaring a whole class immutable.

e JavaScript uses the const keyword.*

Shttp://groovy.codehaus.org/Immutable+AST+Macro.
*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values, _
variables, and literals#Constants.

53

http://groovy.codehaus.org/Immutable+AST+Macro
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values,_variables,_and_literals#Constants
http://groovy.codehaus.org/Immutable+AST+Macro
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values,_variables,_and_literals#Constants
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Values,_variables,_and_literals#Constants

CHAPTER 10 ' FUNCTIONAL PROGRAMMING

For example (in Groovy):

public class Centaur {

final String name

public Centaur(name) {this.name=name}
}
Centaur c¢ = new Centaur("Bane");
println(c.name) // Bane

coO~N OV B WN B

c.name = "Firenze" //error

This works for simple references and primitives, such as numbers and strings, but
for things such as lists and maps, it’s more complicated. For these cases, open source
immutable libraries have been developed for the languages in which it’s not included,
such as the following:

¢ Guava’ for Java and Groovy

¢ Immutable-JS® for JavaScript

10.4 Java8

In Java 8, the Stream interface was introduced. A stream is like an improved iterator that
supports chaining methods to perform complex operations.
To use a stream, you must first create one in one of the following ways:

e Collection's stream() method or parallelStream() method:
These create a stream backed by the collection.

e Arrays.stream() method: Used for converting arrays to streams

e Stream.generate(Supplier<T> s):Returns an infinite sequential
stream in which each element is generated by the given supplier

e Stream.iterate(T seed, UnaryOperator<T> f):Returns
an infinite sequential ordered stream produced by iterative
application of a function to an initial element seed, producing a
stream consisting of seed, f(seed), f(f(seed)), etc.

Once you have a stream, you can then use filter, map, and reduce operations to
concisely perform calculations on the data. For example:

1 String longestName = dragons.stream()

2 .filter(d -> d.name != null)

3 .map(d -> d.name)

4 .reduce((n1, n2) -> ni.length() > n2.length() ? n1 : n2)
5 -get();

https://code.google.com/p/guava-libraries/.
*https://github.com/facebook/immutable-js.

54

https://code.google.com/p/guava-libraries/
https://github.com/facebook/immutable-js
https://code.google.com/p/guava-libraries/
https://github.com/facebook/immutable-js

10.5

CHAPTER 10 ' FUNCTIONAL PROGRAMMING

Groovy

In Groovy, findAll and other methods are available on every object but are especially
useful for lists and sets. The following method names are used in Groovy:

findAll: Much like filter, it finds all elements that match a
closure.

collect: Much like map, this is an iterator that builds a collection.

inject: Much like reduce, it loops through the values and returns
a single value.

each: Iterates through the values using the given closure

eachWithIndex: Iterates through with two parameters: a value
and an index

find: Finds the first element that matches a closure

findIndexOf: Finds the first element that matches a closure and
returns its index

any: True if any element returns true for the closure

every: True if all elements return true for the closure

For example, the following assumes dragons is a list of dragon objects:

B S N

String longestName = dragons.

findAll { it.name != null }.

collect { it.name }.

inject("") { n1, n2 -> ni.length() > n2.length() ? n1 : n2 }

Q(. Remember that it in Groovy can be used to reference the single argument of a closure.

10.6

Scala

Scala has many such methods on its built-in collections, including the following:

map: Converts values

flatMap: Converts values and then concatenates the results
together

filter: Limits the returned values, based on some Boolean
expression

find: Returns the first value matching the given predicate

55

CHAPTER 10 ' FUNCTIONAL PROGRAMMING

e forAll: True only if all elements match the given predicate
e exists:Trueif atleast one element matches the given predicate

e foldLeft: Reduces the values to one value using the given
closure, starting at the last element and going left

e foldRight: Same as foldLeft, but starting from the first value
and going up

For example, you can use map to perform an operation on a list of values, as follows:

1 wal list = List(1, 2, 3)
2 list.map(_ * 2) // List(2, 4, 6)

a@ Much like it in Groovy, in Scala, you can use the underscore to reference a single

argument.

Assuming dragons is a List of dragon objects, you can do the following in Scala:

1 var longestName = dragons.filter(_ != null).map(_.name).foldRight("")(
2 (n1:String,n2:String) => if (n1.length() > n2.length()) n1 else n2)

10.7 Summary

In this chapter, you should have learned about
e Functions as a first-class feature
e Map/Filter/Reduce
¢ Immutability and how it relates to FP

e Various features supporting FPs in Java, Groovy, Scala, and
JavaScript

56

CHAPTER 11

Refactoring

Refactoring' means changing code in a way that has no effect on functionality. It is only
meant to make the code easier to understand or to prepare for some future addition of
functionality For example, sometimes you refactor code to make it easier to test.

There are two categories of refactoring I am going to cover, Object-Oriented and
Functional, corresponding to the two different programming styles.

11.1 Object-Oriented Refactoring

The following actions are common refactorings in OOP:

e Changing a method or class name (renaming)

¢ Moving a method from one class to another (delegation)

e Moving a field from one class to another

e Creating a new class using a set of methods and fields from a class
e Changingalocal variable to a class field

e Replacing a bunch of literals (strings or numbers) with a constant
(static final)

e Moving a class from an anonymous class to a top level class

e Renaming a field

11.2 Functional Refactoring

The following actions are common refactorings in FP:
¢ Renaming a function

e Wrapping a function in another function and calling it

Yes refactoring is a word!

© Adam L. Davis 2016
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_11

CHAPTER 11 I REFACTORING

e Inline a function wherever it is called

e Extract common code into a function (the opposite of the previous.
¢ Renaming a function parameter

e Adding a parameter

You might notice some similarities between both lists. The principles of refactoring
are universal.

11.3 Refactoring Examples

Here are some examples of refactoring code:

11.3.1 Renaming a Method

Before:

1 public static void main(String...args) {
2 animateDead();

3}

4 public static void animateDead() {}
After:

1 public static void main(String...args) {
2 doCoolThing();

3}

4 public static wvoid doCoolThing() {}

11.3.2 Moving a Method from One Class to Another

(Delegation)
Before:
1 public static void main(String...args) {
2 animateDead();
3
4 public static void animateDead() {}

After:

public class Animator() {
public void animateDead() {}
}

1
2
3
4 public static void main(String...args) {
5 new Animator().animateDead();

6 }

58

CHAPTER 11 © REFACTORING

11.3.3 Replacing a Bunch of Literals (Strings or
Numbers) with a Constant (Static Final)

Before:

1 public static void main(String...args) {
2 animateDead(123);

3 System.out.println(123);

4}

5 public static void animateDead(int n) {}
After:

1 public static final int NUM = 123;

2 public static void main(String...args) {
3 animateDead(NUM);

4 System.out.println(NUM);

5}

6 public static void animateDead(int n) {}

11.3.4 Renaming a Function

Before:
1 function castaNastySpell() { /* cast a spell here */ }
After:

1 function castSpell() { /* cast a spell here */ }

11.3.5 Wrapping a Function in Another Function and
Calling It

Before:
1 castSpell('my cool spell');
After:

1 (function(spell) { castSpell(spell) })('my cool spell');

59

CHAPTER 11 I REFACTORING

11.3.6 Inline a Function Wherever It Is Called

Before:

1 function castSpell(spell) { alert('You cast ' + spell); }
2 castSpell('crucio');
3 castSpell('expelliarmus');

After:

1 alert('You cast ' + 'crucio');
2 alert('You cast ' + 'expelliarmus');

11.3.7 Extract Common Code into a Function
(the Opposite of the Previous)

Before:

1 alert('You cast crucio');
2 alert('You cast expelliarmus');

After:
1 function castSpell(spell) { alert('You cast ' + spell); }

2 castSpell('crucio');
3 castSpell('expelliarmus');

60

CHAPTER 12

Utilities /

The java.util package contains many useful classes for everyday programming.
Likewise, JavaScript and other languages come with many built-in objects for doing
common tasks. I am going to cover a few of these.

12.1 Dates and Times

| can has string

You should never store date values as text. It’s too easy to mess up.

© Adam L. Davis 2016 61
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_12

CHAPTER 12 I UTILITIES

12.1.1 Java 8 Date-Time

Java 8 comes with a new and improved Date-Time application program interface (API)
that is much safer, easier to read, and more comprehensive than the previous API.
For example, creating a date looks like the following:

1 LocalDate date = LocalDate.of(2014, Month.MARCH, 2);

There’s also a LocalDateTime class to represent date and time, LocalTime to
represent only time, and ZonedDateTime to represent a time with a time zone.

Before Java 8, there were only two built-in classes to help with dates: Date and
Calendar. These should be avoided.

e Date actually represents both a date and time.
e (alendar is used to manipulate dates.

In Java 7, you'd have to do the following to add five days to a date:

1 Calendar cal = Calendar.getInstance();
2 cal.setTime(date);
3 cal.add(5, Calendar.DAY);

12.1.2 Groovy Date

Groovy has a bunch of built-in features that make dates easier to work with. For example,
numbers can be used to add/subtract days, as follows:

1 def date = new Date() + 5; //adds 5 days

Groovy also has TimeCategory' for manipulating dates and times. This lets you add
and subtract any arbitrary length of time. For example:

import groovy.time.TimeCategory
now = new Date()
println now
use(TimeCategory) {
nexthWeekPlusTenHours = now + 1.week + 10.hours - 30.seconds
}

println nextWeekPlusTenHours

N ouviph WN e

A Category is a class that can be used to add functionality to other existing classes.
In this case, TimeCategory adds a bunch of methods to the Integer class.

'http://groovy.codehaus.org/api/groovy/time/TimeCategory.html.

62

http://groovy.codehaus.org/api/groovy/time/TimeCategory.html
http://groovy.codehaus.org/api/groovy/time/TimeCategory.html

CHAPTER 12 © UTILITIES

CATEGORIES

This is one of the many meta-programming techniques available in Groovy. To make
a category, you create a bunch of static methods that operate on one parameter of a
particular type (e.g., Integer). When the category is used, that type appears to have
those methods. The object on which the method is called is used as the parameter.
Take a look at the documentation for TimeCategory for an example of this in action.

12.1.3 JavaScript Date

JavaScript also has a Date? object.
You can create an instance of a Date object in several ways (these all create the
same date):

1 Date.parse('June 13, 2014')
2 new Date('2014-06-13")
3 new Date(2014, 5, 13)

Note that if you adhere to the international standard (yyyy-MM-dd), a UTC time
zone will be assumed; otherwise, it will assume you want a local time.

As usual with JavaScript, the browsers all have slightly different rules, so you have to
be careful with this.

A Don’t ever use getYear In both Java and JavaScript, the Date object’s getYear()

method doesn’t do what you think and should be avoided. For historical reasons, getYear

does not actually return the year (e.g., 2014). You should use getFullyYear() in JavaScript
and LocalDate or LocalDateTime in Java 8.

12.1.4 Java DateFormat

Although DateFormat is in java.text, it goes hand-in-hand with java.util.Date.
The SimpleDateFormat is useful for formatting dates in any format you want.
For example:

1 SimpleDateFormat sdf = mew SimpleDateFormat("MM/dd/yyyy");
2 Date date = new Date();
3 System.out.println(sdf.format(date));

*http://mz1.1a/1unepot.

63

http://mzl.la/1unepot
http://mzl.la/1unepot

CHAPTER 12 I UTILITIES

This would format a date per the US standard: month/day/year.

a\f More Formatting See SimpleDateFormat® for more information.

12.2 Currency

In Java, Currency is useful if your code has to deal with currencies in several countries. It
provides the following methods:

e getSymbol(): Currency symbol for the default locale
e getSymbol(Locale): Currency symbol for the given locale

e static getAvailableCurrencies(): Returns the set of available
currencies.

For example:

1 String pound = Currency.getSymbol(Locale.UK);

12.3 TimeZone

In Java 8, time zones are represented by the java.time.Zoneld class. There are two types
of Zonelds, fixed offsets and geographical regions. This is to compensate for practices
such as daylight saving time, which can be very complex.

You can get an instance of a ZoneId in many ways, including the following two:

1 Zoneld mountainTime = ZoneId.of("America/Denver");
2 Zoneld myZone = Zoneld.systemDefault();

To print out all available IDs, use getAvailableZonelIds(), as follows:

1 System.out.println(Zoneld.getAvailableZonelds());

" Write a program that does this and run it.

Shttp://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html.

64

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

CHAPTER 12 © UTILITIES

12.4 Scanner

Scanner can be used to parse files or user input. It breaks the input into tokens, using
a given pattern, which is whitespace by default (“whitespace” refers to spaces, tabs, or
anything that is not visible in text).

For example, use the following to read two numbers from the user:

System.out.println("Please type two numbers");
Scanner sc = new Scanner(System.in);

int numi = sc.nextInt();

int num2 = sc.nextInt();

B S N

,‘ Write a program that does this and try it out.

65

PART IV

Real Life

After you master the basics of programming, you might think you're done.
Unfortunately, it’s not that easy. In the real world, you have to learn a lot more,
if you want to be a real computer wizard.

Figure 1. Merlin and King Arthur

CHAPTER 13

Building

The build process is one of compiling the source files of a project and producing a finished
product.

In some companies, there are whole teams whose sole job is the build process.

There are many other build tools, but I'm just going to cover three:

e Ant'
e Maven?

e Gradle?

13.1 Ant

Ant is the first really popular project builder for Java that existed. It is XML-based and
requires you to create tasks in XML that can be executed by Ant.

A task is a division of work. Tasks depend on other tasks. For example, the “jar” task
usually depends on the “compile” task. Although Maven threw away the task concept, it
was used again in Gradle.

Critics of Ant complain that it uses XML (a much-loathed format) and requires a lot
of work to do simple things.

13.2 Maven

Maven is an XML-based declarative project manager. Maven is used for building Java
projects but is capable of much more. Maven is also a set of standards that allows Java/
JVM developers to easily define and integrate dependencies into large projects. Maven
somewhat replaces Ant but can also integrate with it and other build tools.

Maven was mostly a reaction to the huge number of open source libraries Java
projects tend to rely on. It has a built-in standard for dependency management
(managing the interdependencies of open source libraries).

'http://ant.apache.org/.
*http://maven.apache.org/.
*www.gradle.org/.

© Adam L. Davis 2016 69
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_13

http://ant.apache.org/
http://maven.apache.org/
http://www.gradle.org/
http://ant.apache.org/
http://maven.apache.org/
http://www.gradle.org/

CHAPTER 13 I BUILDING

Although Maven is an Apache open source project, it could be said that the core
of Maven is Maven Central, a repository of open source libraries run by Sonatype, the
company behind Maven. There are many other repositories that follow the Maven
standard, such as JFrog’s jCenter,* so you are not restricted to Maven Central.

Ivy® is a similar build tool, but is more closely related to Ant.

Many build tools, such as Ivy and Gradle, build on top of Maven’s concept.

13.2.1 Using Maven

The main file that defines a Maven project is the POM (Project Object Model). The
POM file is written in XML and contains all of the dependencies, plug-ins, properties,
and configuration data that is specific to the current project. The POM file is generally
composed of the following:

e Basic properties (artifactld, groupld, name, version, packaging)
e Dependencies
e Plug-ins

There is a Maven plug-in for every major Java-based IDE out there (Eclipse,
NetBeans, and Intelli] IDEA), and they are very helpful. You can use the Maven plug-in to
create your project, add dependencies, and edit your POM files.

13.2.2 Starting a New Project

There is a simple way to create a new configuration file (pom.xml) and project folders
using the archetype:generate command.

1 mvn archetype:generate

That will list all the different kinds of projects you can create. Pick a number
representing the type of project you want (there are 726 options right now), then answer
some questions regarding the name of your project. After that process, run the following
command to build the project:

1 mvn package
If you want to use any additional third-party libraries, you will have to edit the POM

to include each dependency. Fortunately, most IDEs make it easy to add dependencies to
the POM.

‘https://bintray.com/bintray/jcenter.
Shttp://ant.apache.org/ivy/.

70

https://bintray.com/bintray/jcenter
http://ant.apache.org/ivy/
https://bintray.com/bintray/jcenter
http://ant.apache.org/ivy/

CHAPTER 13 I BUILDING

0 Maven the Complete Reference Maven the Complete Reference® is available
online if you want to learn more.

13.2.3 Life Cycle

Maven uses a declarative style (unlike Ant, which uses a more imperative approach). This
means that instead of listing the steps to take, you describe what should happen during
certain phases of the build. The phases in Maven are as follows:

e validate: Validates that the project is correct and all necessary
information is available

e compile: Compiles the source code of the project

e test: Tests the compiled source code, using a suitable unit-testing
framework

e package: Takes the compiled code and packages it in its
distributable format, such as a JAR

e integration-test:Processes and deploys the package, if necessary,
into an environment in which integration tests can be run

e verify: Runs any checks to verify that the package is valid and
meets quality criteria

e install: Installs the package into the local repository, for use as a
dependency in other projects locally

e deploy: Copies, in an integration or release environment, the
final package to the remote repository, for sharing with other
developers and projects

0 There are more phases,” but you don’t need to know all of them until you are doing

more complex builds.

Swww . sonatype . com/books/mvnref-book/reference/.
"https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.
html#Lifecycle Reference.

71

http://www.sonatype.com/books/mvnref-book/reference/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference
http://www.sonatype.com/books/mvnref-book/reference/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

CHAPTER 13 I BUILDING

13.2.4 Executing Code

Sometimes, however, you just need more control over your build. In Maven, you can
execute Groovy code, Ant build files, Scala code, and you can even write your own plug-
ins in Groovy.

For example, you can put Groovy code in your POM file in the following way:

1 <plugin>

2 <groupId>org.codehaus.groovy.maven</groupIld>

3 <artifactId>gmaven-plugin</artifactId>

4 <executions>

5 <execution>

6 <id>groovy-magic</id>

7 <phase>prepare-package</phase>

8 <goals>

9 <goal>execute</goal>

10 </goals>

11 <configuration>

12 <source>

13 def depFile = new File(project.build.outputDirectory,

"deps.txt")

14

15 project.dependencies.each() {

16 depFile.write("${it.groupId}:${it.artifactId}:${it.
version}")

17 }

18

19 ant.copy(todir: project.build.outputDirectory) {

20 fileset(dir: project.build.sourceDirectory)

21 }

22 </source>

23 </configuration>

24 </execution>

25 </executions>

26 </plugin>

The preceding code would write out every dependency of the project into the
file deps.txt. Then it would copy all of the source files into the project.build.
outputDirectory (usually target/classes).

0 See Chapters 2, 3, and 4 in The Maven Cookbook.?

8http://books.sonatype.com/mcookbook/reference/index.html

72

http://dx.doi.org/10.1007/978-1-4842-2490-8_2
http://dx.doi.org/10.1007/978-1-4842-2490-8_3
http://dx.doi.org/10.1007/978-1-4842-2490-8_4
http://books.sonatype.com/mcookbook/reference/index.html
http://books.sonatype.com/mcookbook/reference/index.html

CHAPTER 13 I BUILDING

13.3 Gradle

Gradle is a Groovy-based DSL (domain specific language) system for building projects.
The Gradle web site describes it as follows:

Gradle combines the power and flexibility of Ant with the dependency
management and conventions of Maven into a more effective way to
build. Powered by a Groovy DSL and packed with innovation, Gradle
provides a declarative way to describe all kinds of builds through sensible
defaults.

—gradle.org’

13.3.1 Projects and Tasks

Each Gradle build is composed of one or more projects, and each project is composed
of tasks.

The core of the Gradle build is the build.gradle file, which is called the build script.
Tasks are defined by writing task, then a task-name followed by a closure. For example:

1 task upper {

2 String someString = 'test'

3 println "Original: $someString"

4 println "Uppercase: " + someString.toUpperCase()
5)

Tasks can contain any Groovy code, but you can take advantage of existing Ant tasks;
for example:

ant.loadfile(srcFile: file, property: 'x') //loads file into x
ant.checksum(file: file, property: "z") // put checksum into z
println ant.properties["z"] //accesses ant property z

The preceding code would load a file into Ant-property "x", save the file’s checksum
in Ant-property "z", and then print out that checksum.

Much as in Ant, a task can depend on other tasks, which means they must be run
before the task. You simply call dependsOn with any number of task names as arguments.
For example:

1 task buildApp {
2 dependsOn clean, installApp, processAssets

3}

“www.gradle.org/.

73

http://www.gradle.org/
http://www.gradle.org/

CHAPTER 13 I BUILDING

13.3.2 Plug-ins

Gradle core has very little built-in. It has powerful plug-ins to allow it to be very flexible.
A plug-in can do one or more of the following:

e Add tasks to the project (e.g., compile, test)
e Pre-configure added tasks with useful defaults
¢ Add dependency configurations to the project
e Add new properties and methods to existing type, via extensions
We're going to concentrate on building Java-based projects, so we’ll be using the
java plug-in; however, Gradle is not limited to Java projects!

1 apply plugin: 'java'

This plug-in uses Maven'’s conventions. For example, it expects to find your
production source code under src/main/java and your test source code under
src/test/java.

13.3.3 Maven Dependencies

Every Java project tends to rely on many open source projects to be built. Gradle builds on
Maven, so you can easily include your dependencies, using a simple DSL, such as in the
following example:

1 apply plugin: 'java'

2

3 sourceCompatibility = 1.7

4

5 repositories {

6 mavenLocal()

7 mavenCentral()

8 }
9
10 dependencies {
11 compile 'com.google.guava:guava:14.0.1'
12 compile 'org.bitbucket.dollar:dollar:1.0-beta2’
13 testCompile group: 'junit', name: 'junit', version: '4.+'
14 testCompile "org.mockito:mockito-core:1.9.5"
15 }

74

CHAPTER 13 I BUILDING

This build script uses sourceCompatibility to define the Java source code version
of 1.7 (which is used during compilation). Next, it tells Maven to use the local repository
first (mavenLocal), then Maven Central.

In the dependencies block, this build script defines two dependencies for the
compile scope and two for testCompile scope. Jars in the testCompile scope are only
used in tests and won't be included in any final products.

The line for JUnit shows the more verbose style for defining dependencies.

0 Online Documentation Gradle has a huge online user guide available online at
gradle.org."

www.gradle.org/docs/current/userguide/userguide.html.

75

http://www.gradle.org/docs/current/userguide/userguide.html
http://www.gradle.org/docs/current/userguide/userguide.html

CHAPTER 14

Testing

Testing is a very important part of software creation. Without automated tests, it’s very
easy for bugs to creep into software.

In fact, some go as far as to say that you should write tests before you write the code.

This is called TDD (test-driven development).

14.1 Types of Tests

The following are different types of tests you might write:
e Unit test: Test conducted on a single API call or some isolated code

e Integration test: Test of a higher order code that requires a test
harness, mocking, etc.

e Acceptance test: High-level test that matches the business
requirements

e Compatibility: Making sure that things work together
e Functionality: Ensuring that stuff works

e Black box: Test conducted without knowing/thinking about
what’s going on in the code

e White box: Tests written with the inside of code in mind
e Gray box: Hybrid of black and white box testing

e Regression: Creating a test after finding a bug, to ensure that the
bug does not reappear

e Smoke: A huge sampling of data
e Load/Stress/Performance: How the system handles load

The type and number of tests you write vary, based on a number of factors. The
simpler a piece of code is, the less testing it requires. For example, a “getter” or “setter”
does not require a test at all.

© Adam L. Davis 2016
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_14

7l

CHAPTER 14 I TESTING

14.2 JUnit

JUnit' is a simple framework to write repeatable tests.

A typical JUnit 4.x test consists of multiple methods annotated with the @Test
annotation.

At the top of every JUnit test class, you should include all the static Assert methods,
and annotations, like so:

import static org.junit.Assert.*;
import org.junit.Test;

import org.junit.Before;

import org.junit.After;

o R S R

Use @Before, to annotate initialization methods that are run before every test, and
@After, to annotate breakdown methods that are run after every test.

Each test method should test one thing, and the method name should reflect the
purpose of the test. For example:

1 @Test

2 public void toStringYieldsTheStringRepresentation() {

3 String[] array = {"a", "b", "c"};

4 ArrayWrapper<String> arrayWrapper = new
ArrayWrapper<String>(array);

5 assertEquals("[a, b, c]", arrayWrapper.toString());

6 }

14.2.1 Hamcrest

In more recent versions (JUnit 4.4+2), JUnit also includes Hamcrest matchers.

1 import static org.hamcrest.Matchers.*;
2 import static org.junit.Assert.*;

You can create more readable tests using the Hamcrest core matchers. For example:
@Test

public void sizeIs10() {
assertThat(wrapper.size(), is(10));
}

B~ wWw N R

'http://junit.org/.
2http://junit.sourceforge.net/doc/ReleaseNotes4.4.html.

78

http://junit.org/
http://junit.sourceforge.net/doc/ReleaseNotes4.4.html
http://junit.org/
http://junit.sourceforge.net/doc/ReleaseNotes4.4.html

CHAPTER 14 I TESTING

14.2.2 Assumptions

Often, there are variables outside of a test that are beyond your control but which your
test assumes to be true. When an assumption fails, it shouldn’t necessarily mean that
your test fails. For this purpose, JUnit added assumeThat, which you may import, like so:
1 import static org.junit.Assume.*;

You can verify assumptions before your assertions in your tests. For example:

1 assumeThat(File.separatorChar, is('/"'));

When an assumption fails, the test is either marked as passing or ignored, depending
on the version of JUnit.?

Shttp://junit.sourceforge.net/doc/ReleaseNotes4.4.html.

79

http://junit.sourceforge.net/doc/ReleaseNotes4.4.html
http://junit.sourceforge.net/doc/ReleaseNotes4.4.html
http://junit.sourceforge.net/doc/ReleaseNotes4.4.html
http://junit.sourceforge.net/doc/ReleaseNotes4.4.html

CHAPTER 15

Input/Output

15.1 Files

In Java, the java.io.File class is used to represent files and directories. For example:

1 File file = new File("path/file.txt");
2 File dir = new File("path/"); //directory

Java 7 added several new classes and interfaces for manipulating files and
filesystems. This new application program interface (API) allows developers to access
many low-level OS operations that were not available from the Java API before, such as
the WatchService and the ability to create links (in Linux/Unix operating systems).

Paths are used to more consistently represent file or directory paths.

1 Path path = Paths.get("/path/file");
This is shorthand for the following:
1 Path path = FileSystems.getDefault().getPath("/path/file");

The following list defines some of the most important classes and interfaces of the API:

Files: This class consists exclusively of static methods that
operate on files, directories, or other types of files.

Paths: This class consists exclusively of static methods that
return a path by converting a path string or URL.

WatchService: An interface for watching various file-system
events, such as create, delete, modify.

15.2 Reading Files

To read a text file, use BufferedReader.

© Adam L. Davis 2016 81
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_15

CHAPTER 15 I INPUT/OUTPUT

1 public void readWithTry() {

2 Charset utf = StandardCharsets.UTF_8;

3 try (BufferReader reader = Files.newBufferedReader(path, utf)) {
4 for (String line = br.readlLine(); line != null; line =
br.readLine())

5 System.out.println(line);

6 } catch (IOException e) {

7 e.printStackTrace();

8 }

9 }

The new automatic resource management feature of Java 7 makes dealing with
resources, such as files, much easier. Before Java 7, users needed to explicitly close all
open streams, causing some very verbose code. By using the preceding try statement,
BufferedReader will be closed automatically.

However, in Groovy, this can be reduced to one line (leaving out exception
handling), as follows:

1 println path.toFile().text

A getText () method is added to the File class in Groovy that simply reads the whole file.

15.3 Writing Files

Writing is similar to reading. For writing to text files, you should use PrintWriter. It
includes the following methods (among others):

e print(Object): Prints the given object directly calling
toString() onit

e println(Object): Prints the given object and then a newline
e println(): Prints the newline character sequence

e printf(String format, Object..args): Prints a formatted string
using the given input

There are other ways to output to files, such as DataOutputStream, for example:

-

public void writeWithTry() {
2 try (FileOutputStream fos = new FileOutputStream("books.txt");

3 DataOutputStream dos = new
DataOutputStream(fos)) {

4 dos.writeUTF("Modern Java");

5 } catch (IOException e) {

6 // log the exception

7 }

8 }

82

CHAPTER 15 © INPUT/OUTPUT

DataOutputStream allows an application to write primitive Java data types to an
output stream. You can then use DataInputStream to read the data back in.
In Groovy, you can more easily write to a file, as follows:

1 new File("books.txt").text = "Modern Java"

Groovy adds a setText method to the File class, which allows this syntax to work.

15.4 Downloading Files

Although you might not ever do this in practice, its fairly simple to download a web page/
file in code.

The following Java code opens an HTTP connection on the given URL
(http://google.com, in this case), reads the data into a byte array, and prints out the
resulting text.

URL url = new URL("http://google.com");

InputStream input = (InputStream) url.getContent();
ByteArrayOutputStream out = new ByteArrayOutputStream();
int n = 0;

byte[] arr = new byte[1024];

while (-1 != (n = input.read(arr)))
out.write(arr, 0, n);

L oo~NOVT A WNBR

iy
o

System.out.println(new String(out.toByteArray()));
However, in Groovy, this also can be reduced to one line (leaving out exceptions).
1 println "http://google.com".toURL().text

A toURL() method is added to the String class, and a getText () method is added to
the URL class in Groovy.

15.5 Summary

After reading this chapter, you should understand how to
e Explore the file system in Java
¢ Readfromafile
e Writeto afile

e Download the Internet

83

http://google.com/

CHAPTER 16

Version Control

As soon as people start their programming careers, they are hit with the ton of bricks that
is the version control system (VCS).

Version control software is used to keep track of, manage, and secure changes to
files. This is a very important part of modern software development projects.

I am going to cover two popular ones, but there are many more:

e SVN (Subversion)

o Git(git)
Every VCS has the following basic actions:

e Add

e Commit

e Revert

e Remove

e Branch

e Merge

IDEs have plug-ins for dealing with version control systems and usually have built-in
support for popular systems such as SVN and Git.

16.1 Subversion

SVN'! was made as an improvement to an ancient and very popular VCS called CVS. It was
a huge leap forward. Among other benefits, it allows any directory in the hierarchy to be
checked out of the system and used.

'https://subversion.apache.org/.

© Adam L. Davis 2016 85
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_16

https://subversion.apache.org/
https://subversion.apache.org/

CHAPTER 16 I VERSION CONTROL

To begin using SVN on the command line, you will check out a project and then
commit files, as follows:

1 svn checkout http://example.com/svn/trunk
2 svn add file
3 svn commit

f Install SVN. Using your command prompt, check out a project from Google Code.? For

example: svn checkout http://wiquery.googlecode.com/svn/trunk/ wiquery-read-only.

16.2 Git

Git® is a distributed version control system. This means that every copy of the source code
contains the entire history of the code.
To begin using Git on a new project, simply run the following command:

1 git init
Create a file called README and then commnit it, as follows:

1 git add README
2 git commit -m "this is my comment"

f Install Git. Go to github.com* and clone a repository. For example: git clone git@

github.com:adamd/modern-java-examples.git.

16.3 Mercurial

Mercurial predates Git but is very similar to it. It’s used for a lot of projects on Google
Code and Bitbucket.®

f Install Mercurial. Go to Bitbucket and clone a repository using Mercurial. For example:
hg clone https://bitbucket.org/adamldavis/dollar.

*http://googlecode.com.
*http://git-scm.com/.
*https://github.com/modernprog/part3.
https://bitbucket.org/.

86

http://googlecode.com/
http://wiquery.googlecode.com/svn/trunk/
http://git-scm.com/
https://bitbucket.org/
https://bitbucket.org/adamldavis/dollar
http://googlecode.com/
http://git-scm.com/
https://github.com/modernprog/part3
https://bitbucket.org/

CHAPTER 17

The Interweb /

TERMS | HAVE USED OR HEARD USED
TO MAKE FUN OF THE INTERNET:

NET |WEB |SPHERE|TUBES | BLAG

WoRw WiOE _|
INTER-
BLOGO-
BLAGO-
WEB-

| HEARD ABGUT IT
ON THE INTERBLAG!

P 7

(Courtesy xkcd: Interblag)

© Adam L. Davis 2016 87
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_17

CHAPTER 17 I THE INTERWEB

17.1 Web 101

The Web is a complex beast. Here’s what you need to know:
e Server: The computer serving web pages
e C(lient: The computer that receives web pages and is used by a person
e HTML: The language used to create web pages
e (SS: “Cascading style-sheets”; store the styles of the web page

e JavaScript: A programming language that is used within web
pages and executed on the client

17.2 My First Web App

You should make something very basic for your first web application. This way, you
will have a better understanding of what'’s going on “behind the scenes” of many web
frameworks.

Create a file called App. java and copy the following code into it:

1 import java.io.IOException;

2 import java.io.OutputStream;

3 import java.net.InetSocketAddress;

4 import com.sun.net.httpserver.*;

5

6 public class App {

7

8 static class MyHandler implements HttpHandler {

9 public void handle(HttpExchange t) throws IOException {
10 String response = "<html> Hello Inter-webs! </html>";
11 t.sendResponseHeaders (200, response.length());

12 OutputStream os = t.getResponseBody();

13 os.write(response.getBytes());

14 os.close();

15 }

16 }

17

18 public static void main(String[] args) throws Exception {

19 HttpServer server = HttpServer.create(new InetSocketAddress(8000), 0);
20 server.createContext("/", new MyHandler());

21 server.setExecutor(null); // creates a default executor

22 server.start();

23 System.out.println("Server running at http://localhost:8000/");
24 }

25

26}

88

CHAPTER 17 © THE INTERWEB

All this does is create an HttpServer that listens for connections on port 8000 and
responds with a message.

After running this code (javac App.java & java App), open your web browser and
pointitto http://localhost:8000/.

Q localhost refers to the computer you’re on, and :8000 refers to port 8000.

Congratulations! You just made a web application!
It's not on the Internet yet, and it’s extremely simple, but it’s a good start.

PORT?

e URL (Universal Resource Locator): The unique name used to locate
resources on any network or machine. Sometimes it starts with
“http”; sometimes it includes a port.

e HTTP Hypertext Transfer Protocol: The typical protocol used to
communicate over the wire

e Port. A number that must be specified when communicating
between computers (the default port for HTTP is 80)

17.3 The Holy Grails

Grails is a web framework for Groovy that follows the example of Ruby on Rails (hence
Grails). It is an opinionated web framework with a command-line tool that gets things done
really fast. Grails uses convention over configuration to reduce configuration overhead.

Grails lives firmly in the Java ecosystem and is built on technologies such as Spring
and Hibernate. Grails also includes an object-relational mapping (ORM) framework
called GORM and has a large collection of plug-ins.

17.3.1 Quick Overview

After installing Grails,' you can create an app by running the following on the command line:

1 $ grails create-app

This overview is based on Grails 2.1.4, but the basics should remain the same for all versions of Grails.

89

http://localhost:8000/

CHAPTER 17 I THE INTERWEB

Then, you can run commands such as create-domain-class and generate-all
to create your application as you go. Run grails help to see the full list of commands

available.

Grails applications have a very specific project structure. The following is a simple

breakdown of most of that structure:

e grails-app: The Grails-specific folder

conf: Configuration, such as the data source and Bootstrap

controllers: Controllers with methods for index/create/edit/
delete, or anything else

domain: Domain model; classes representing your persistent
data

i18n: Message bundles
jobs: Any scheduled jobs you might have go here

services: Back-end services in which your back end or
“business” logic goes

taglib: You can very easily define your own tags for use in
your GSP files.

views: Views of MVC; typically, these are GSP files
(HTML-based)

e src:Any utilities or common code that doesn’t fit anywhere else

java: Java code

groovy: Groovy code

e web-app

css: CSS style sheets
images: Images used by your web application
js: Your JavaScript files

WEB-INF: Spring’s applicationContext.xml goes here.

To create a new domain (model) class, run the following:

1 % grails create-domain-class

It's a good idea to include a package for your domain classes (such as example.Post).
A domain class in Grails also defines its mapping to the database. For example,
here’s a domain class representing a blogpost (assuming User and Comment have already
been created):

90

CHAPTER 17 © THE INTERWEB

1 class Post {

2 String text

3 int rating

4 Date created = new Date()
5 User createdBy

6

7 static hasMany = [comments: Comment]
8

9 static constraints = {
10 text(size:10..500)
11 }
12}

The static hasMany field is a map that represents one-to-many relationships in your
database. Grails uses Hibernate in the background to create tables for all your domain
classes and relationships. Every table gets an id field for the primary key by default.

To have Grails automatically create your controller and views, run the following:

1 $ grails generate-all

A Grails will ask if you want to overwrite existing files, if they exist. So, be careful when

using this command.

When you want to test your app, you simply run the following:
1 $ grails run-app
When you're ready to deploy to a server, you can create a “war” file by typing this:

1 $ grails war

17.3.2 Plug-ins

The Grails ecosystem now includes over 1,000 plug-ins. To list all of the plug-ins, simply
execute

1 $ grails list-plugins

When you've picked out a plug-in you want to use, execute the following (with the
plug-in name and version):

1 $ grails install-plugin [NAME] [VERSION]

91

CHAPTER 17 I THE INTERWEB

This will add the plug-in to your project. If you decide to uninstall it, simply use the
uninstall-plugin command.

o Only an Overview This has been only a brief overview of Grails. Many books have

been written about Grails and how to use it. For more information on using Grails, please
visit grails.org.?

17.4 Cloud

Grails is supported by the following cloud providers:
¢ CloudFoundry?
e Amazon*
e Heroku®

However, it is not within the scope of this book to go over all of them, so I'll talk talk
about Heroku.

Heroku® is owned by Salesforce.com.” It was one of the first cloud platforms and
has been in development since June 2007. When it began, it supported only Ruby, but it
has since added support for Java, Scala, Groovy, Node.js, Clojure, and Python. Heroku
supports multiple tiered accounts, including a free account.

Heroku relies on git for pushing changes to your server. For example, to create an
app in Heroku using the CLI, do the following:

1 % heroku create
2 $ git push heroku master

Your app will be up and running, and Heroku will identify the URL where you will find it.

f Go launch a Grails app on Heroku!

*http://grails.org/.

*www . cloudfoundry.com/.

‘http://aws.amazon.com/ec2/.

Swww . heroku. com/.

Swww . heroku. com/.

"http://news.heroku.com/news_releases/
salesforcecom-signs-definitive-agreement-to-acquire-heroku.

92

http://www.cloudfoundry.com/
http://aws.amazon.com/ec2/
http://www.heroku.com/
http://www.heroku.com/
http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku
http://grails.org/
http://www.cloudfoundry.com/
http://aws.amazon.com/ec2/
http://www.heroku.com/
http://www.heroku.com/
http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku
http://news.heroku.com/news_releases/salesforcecom-signs-definitive-agreement-to-acquire-heroku

CHAPTER 17 © THE INTERWEB

17.5 The REST

REST stands for REpresentational State Transfer.® It was designed in a Ph.D. dissertation
and has gained some popularity as the new web-service standard. Many developers have
praised it as a much better standard than SOAP (which I will not attempt to describe).

At the most basic level in REST, each CRUD (create, read, update, delete) operation is
mapped to an HTTP method.

e Create: POST

e Read:GET

e Update: PUT

e Delete: DELETE

The transport mechanism is assumed to be HTTP, but the message contents can be
of any type, usually XML or JSON.

The JSR community has designed the JAX-RS API for building RESTful Java web
services, while Groovy and Scala both have some built-in support for XML and JSON and
various way of building web services.

17.5.1 Using Maven Archetypes

You can create a simple Java REST (JAX-RS) application using Maven, as follows:
1 mvn archetype:generate

Wait for things to download and then choose “tomcat-maven-archetype” (type
“tomcat-maven” and press Enter, then type “1”; Enter; Enter). You will need to enter a
groupld and artifactId.

After creating your application, you can start it by typing the following command:

1 mvn tomcat:run

17.6 Summary

Congratulations! You now understand the Interweb. Yes, it is a series of tubes. Ted Stevens
(see following) was right!

...They want to deliver vast amounts of information over the Internet.
And again, the Internet is not something that you just dump something
on. It’s not a big truck. It’s a series of tubes. And if you don’t understand,
those tubes can be filled and if they are filled, when you put your message
in, it gets in line and it’s going to be delayed by anyone that puts into that
tube enormous amounts of material, enormous amounts of material.

—Theodore “Ted” Fulton Stevens, Sr.—US senator from Alaska from
December 24, 1968-January 3, 2009

Swww. ics.uci.edu/~fielding/pubs/dissertation/top.htm.

93

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

CHAPTER 18

Swinging Graphics

Swing is the Java API for building cross-platform GUISs (graphical user interfaces).

If you ever want to write a graphical program (a computer game, for example), you
will have to use Swing or some similar API.

There are many other libraries for doing graphics in Java, but Swing is built in.

OAII of the code for this chapter can be found on the GitHub repository.

18.1 Hello Window

The most basic concept of graphics is getting stuff onto the screen.
The easiest way to do this in Swing is to use JWindow, for example:

1 import javax.swing.*;

2

3 public class HelloWindow extends JWindow {

4

5 public HelloWindow() {

6 setSize(500, 500); //width, height

7 setAlwaysOnTop(true);

8 setVisible(true);

9 }

10

11 @0verride

12 public void paint(Graphics g) {

13 g.setFont(g.getFont().deriveFont(20f));
14 g.drawString("Hello Window", 10, 20); //x,y
15 }

16

'https://github.com/modernprog/part3.

© Adam L. Davis 2016 95
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_18

https://github.com/modernprog/part3
https://github.com/modernprog/part3

CHAPTER 18 I SWINGING GRAPHICS

17 public static void main(String[] args) {
18 new HelloWindow();

19 }

20

21}

Running this code will create a window at the top left of your screen, with the words
“Hello Window” printed on it.
In the constructor, the following occurs:

e The width and height of the window are both set to 500 pixels.

e The window is set to always be displayed (above all other
windows) with the setAlwaysOnTop method.

e Finally, setVisible(true) is called to make the window visible.

The paint method gets called every time the window is drawn on the screen. This
method simply does the following:

e Sets the font size to 20

e Draws the string “Hello World” at coordinates x=10, y=20
(coordinates are always in pixels)

You might notice that the “window” doesn’t have any edges, header, menu, or
minimize/maximize icons that you're used to. To get these things, you use a JFrame.
Here’s a very simple example:

import javax.swing.*;
public class HelloFrame extends JFrame {

1

2

3

4

5 public HelloFrame() {

6 super ("Hello");

7 setSize(500, 500);

8 setAlwaysOnTop(true);
9 setVisible(txue);

10 setDefaultCloseOperation(EXIT_ON_CLOSE);
11 }

12

13 public static void main(String[] args) {

14 new HelloFrame();

15 }

16

17 '}

Running this code creates a 500x500 “window with frame” with the name “Hello,”
and closing the window would exit the application.

96

CHAPTER 18 I SWINGING GRAPHICS

18.2 Push My Buttons

Buttons are one of the ways that users can interact with your program. To cause
something to happen when a button is pressed, you use an “ActionListener,” for example:

1 JButton button = new IJButton("Talk!");

2 button.addActionListener(new ActionListener() {

3 public void actionPerformed(ActionEvent e) {

4 JOptionPane.showMessageDialog(HelloFrame.this, "Hello!");
5 }

6 1);

7 getContentPane().add(button);

Q(. The showMessageDialog method of JOptionPane is similar to JavaScript's alert

method, in that it shows a pop-up window.

InJava 8, the ActionListener part can be shortened to the following:

1 button.addActionListener(e -> JOptionPane.showMessageDialog(this, "Hello!"));
The Groovy syntax is slightly different (it only requiresa { and }).

1 button.addActionListener({e ->JOptionPane.showMessageDialog(this, "Hello!")})

Swing has many interfaces that end with the word “Listener,” such as:
e Keylistener
e Mouselistener
e WindowListener

The Listener pattern is very similar to the Observer design pattern.

18.3 Fake Browser

Let’s make a web browser!
Let’s begin by creating the fields and constructor for the class, as follows:

public class Browser extends JFrame {
JTextField urlField = new JTextField();

1

2

3

4 JEditorPane viewer = new JEditorPane();
5 JScrollPane pane = new JScrollPane();
6

97

CHAPTER 18 I SWINGING GRAPHICS

7 public Browser() {

8 super ("Browser");

9 setSize(800,600);

10 setAlwaysOnTop(true);

11 setDefaultCloseOperation(EXIT ON CLOSE);
12 init();

13 }

JTextField will be used to input the URL. JEditorPane is used to show the HTML,
and the JScrollPane allows the page to be scrollable.
Next, we define the init() method to put everything together.

1 private void init() {

2 viewer.setContentType("text/html");

3 pane.setViewportView(viewer);

4 JPanel panel = new JPanel();

5 panel.setlLayout(new BorderLayout(2,2));

6 panel.add(pane, BorderLayout.CENTER);

7 panel.add(urlField, BorderLayout.NORTH);

8 getContentPane().add(panel);

9 urlField.addKeylListener(new KeyAdapter() {

10 @0verride

11 public void keyReleased(KeyEvent e) {
12 handleKeyPress(e);

13 }

14 }s

15 }

The viewer is set as the viewport view of the JScrol1Pane, so it can be scrolled.

JPanel is created with a BorderLayout. This allows us to arrange urlField on top of
the scroll pane, much as in a real browser. KeyListener is used to call handleKeyPress
whenever a key is pressed inside urlField.

Next, we fill out the handleKeyPress method.

1 private void handleKeyPress(KeyEvent e) {

2 if (e.getKeyCode() == KeyEvent.VK ENTER) {

3 try {

4 viewer.setPage(new URL(urlField.getText()));
5 } catch (MalformedURLException ex) {

6 ex.printStackTrace();

7 } catch (IOException ex) {

8 ex.printStackTrace();

9

}

98

CHAPTER 18 I SWINGING GRAPHICS

This method simply sets the page of JEditorPane to the URL from urlField
whenever the Enter key is pressed.
Finally, we define the main method.

1 public static void main(String[] args) {
2 new Browser().setVisible(true);

3}

f Eat your own dog food Run your app from Chapter 18. Open your fake browser,
and point it to the app at http://localhost:8000/.

18.4 Griffon

Griffon?* is a Groovy-based framework for creating Swing GUISs. It has a command-line
interface very similar to Grails.
To begin a new project type, use the following:

1 griffon create-app griffon-example -archetype=jumpstart

Here, the name of the project is “griffon-example.”
Griffon uses the MVC design pattern and Groovy DSL to make it much easier to build
Swing applications.

18.5 Advanced Graphics

Although far beyond the scope of this book, there are several libraries that can be used for
2D or 3D graphics. Here are some of them.
Java 2D

e JavaFX?

e JFreeChart*
e Piccolo2D®
e JMagick®

*http://griffon.codehaus.org/
*www.oracle.com/technetwork/java/javatx/index.html
‘www. jfree.org/jfreechart/

‘www.piccolo2d.org/
Shttp://sourceforge.net/projects/jmagick/

99

http://dx.doi.org/10.1007/978-1-4842-2490-8_18
http://localhost:8000/
http://griffon.codehaus.org/
http://www.oracle.com/technetwork/java/javafx/index.html
http://www.jfree.org/jfreechart/
http://www.piccolo2d.org/
http://sourceforge.net/projects/jmagick/
http://griffon.codehaus.org/
http://www.oracle.com/technetwork/java/javafx/index.html
http://www.jfree.org/jfreechart/
http://www.piccolo2d.org/
http://sourceforge.net/projects/jmagick/

CHAPTER 18 I SWINGING GRAPHICS

Java 3D

JOGL?

JMonkeyEngine®

JavaScript 2D

d3®
Highcharts™

JavaScript 3D

18.6

three.js'!

Graphics Glossary

Component: Any graphical element defined in the Java
graphics API

Double-Buffering: A technique used in graphics in which
elements are drawn in memory before being sent to the
computer screen. This avoids flicker.

Frame: In Swing, the frame (JFrame) is used to represent what
we typically call a “window” in the GUI.

GUI: Graphical user interface

Layout: Strategy used by Swing for arranging components
within a panel or other component

Menu: There are two kinds of menus: a windows built-in
menu (JMenu) and a pop-up menu (JPopupMenu).

Menu item: In Swing, the JMenuItem represents one line of a
menu that can have an action associated with it.

Panel: In Swing, JPanel is used to contain other components.

Pixel: Smallest unit of the screen that is drawable. A typical
screen has millions of pixels that are arranged in a grid.

Window: Rectangular section of the screen. In Swing, the
Window object has no border, so it can be used for a splash
image, for example.

"http://download.java.net/media/jogl/www/.
$http://jmonkeyengine.org/.
*http://d3js.org/.

www.highcharts.com/.

"http://threejs.org/.

100

http://download.java.net/media/jogl/www/
http://jmonkeyengine.org/
http://d3js.org/
http://www.highcharts.com/
http://threejs.org/
http://download.java.net/media/jogl/www/
http://jmonkeyengine.org/
http://d3js.org/
http://www.highcharts.com/
http://threejs.org/

CHAPTER 18 I SWINGING GRAPHICS

18.7 Summary

You just learned the following:
e Creating a cross-platform GUI interface in Java and Groovy
e How to make a web browser worse than IE

e Some of the available graphics libraries

101

CHAPTER 19

Creating a Magical User
Experience

First, you should be aware of the following acronyms:
UX: User experience
UL User interface

KISS: Keep it simple, stupid

19.1 Application Hierarchy

You should prioritize your UX according to the following characteristics, from highest to
lowest:

1. Functionality: Software does what it should.
Usefulness: Is the software easy to use?

Efficiency: Can the user work efficiently?

Eal N

Magicalness: Is the experience magical?

You can’t focus on being usable if your software is not functional. You can’t focus on
being efficient if your software is not usable.

After you have mastered all the basics (functionality, usability, and efficiency), only
then can you attempt to make your Ul magical.

19.2 Consider Your Audience

It’s always important to consider the audience for your software. You should get to
know them.

© Adam L. Davis 2016 103
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_19

CHAPTER 19 I CREATING A MAGICAL USER EXPERIENCE

Those of you familiar with Harry Potter (or magic, in general) will recognize the
words wizard/witch and muggle. In Potter’s world, a Squib is someone who’s aware of
magic but not able to practice it, and a muggle is a normal person who's unware of magic.

We can apply this analogy to software.

e Random User: Muggle
® Rock Star: Squib

e Genius: Wizard/witch

19.3 Choice Is an lllusion

The more choices a person has, the more thinking they are required to do. As a designer,
you should do the following:

e Limit choices
e Prepare for every possible choice
e Tailor choices for your audience

You will often have to decide whether to give your user a choice or make the choice
for them.

The easy way is always to let the user decide, but the better way is generally to give the
user one less choice. This will make your software simpler and, therefore, easier to use.

19.4 Direction

Work instinctively—instinct is your friend. Motion is a subtle and effective way of getting
the user’s attention. Of course, too much motion is a distraction, so it should be kept to a
minimum.

Another instinctual image is the human face. Faces are noticed first. This is why you
always see faces on the left-hand side of text (in languages that read from left to right).
The eye is drawn first to the face and then to the accompanying text.

19.5 Skuemorphism

Skuemorph: is something from real life that is imitated in software.

Simulating real-life features, such as edges, bevels, and buttons, can be useful for
communicating affordability (what the user can do with something). However, you have
to get it 100% right, if you're simulating a complete object (such as a book). This is why
skuemorphism is generally a bad idea. Imitating something from the real world comes
across as fake, if it is not done perfectly.

Windows 8 exemplifies the opposite approach—it attempts to remove all metaphor.
The new UI of Windows (sometimes called Metro) is very flat and edgeless. Of course, you
can take this concept too far. For example, what is clickable should still be obvious.

104

CHAPTER 19 I CREATING A MAGICAL USER EXPERIENCE

19.6 Context Is Important

Three stars with no context could mean anything. However, given context (3/5 stars),
what is meant becomes obvious.

Also, context is important for navigation. It must be obvious where the user is in your
software at all times and how to navigate somewhere else. Otherwise, your users will feel
lost, which is not a comfortable feeling.

A related concept is to avoid “modes.” The more ways there are to interact with the
software, the more complex it will seem.

19.7 KISS

Above all, keep things simple—simple for the user. For example, in general, there
should always be one way to do something in the software. Also, as a general rule, your
Ul should follow the conventions set by existing software/web sites (for example, always
underline links).

As your software grows, you will constantly have to make choices about new Ul
features. In addition to other considerations, you should also contemplate how they can
be made simpler.

19.8 You Are Not the User

Unless you are building software only for yourself, the overwhelming probability is that
your users are very different from you. For this reason, you must not only try to think like
your user but also really get to know him or her.

This means ideally that you sit down and watch your users operate the software.

19.9 Summary

From this chapter, you should have learned the following:
e Your Ul should be functional, usable, and efficient, in that order.
e Consider who your user is during all phases of design
e Limit choices and handle all conditions
e Instinctis your friend, but don’t imitate reality.
e Keep things simple for users and listen to them

For more about usability, I highly recommend Steve Krug’s Don’t Make Me Think
(New Riders, 2014).

105

http://bit.ly/dontmakeme2

CHAPTER 20

Databases

Databases are an extremely important component of most software projects.

If you're not familiar with a database, it is a software system that stores data and
enables calculations on those data, somewhat like a spreadsheet.

An original database is known as a relational database, because it stores
relationships between tables in the database. A database typically consists of several
highly structured data tables with defined constraints. For example, each column of a
table has a type, whether or not it can be null, if it must be unique, and other constraints.

There is a highly standardized language for performing operations and calculations
on a database called SQL (Structured Query Language). SQL has been around a long time
and could easily warrant its own book, so I will only cover the basics here.

Since the advent of so-called big-data projects (such as a particular “face”-themed
social network), a second category of databases has emerged: NoSQL databases.
Typically, these are more like key-value pairs than relational databases. They include
Redis, MongoDB, Cassandra, and many others.

Note The SQL/NoSQL categorization is an oversimplification, but it provides an easier
narrative than the actual complex reality. In other words, “Here be dragons!”

20.1 SQL (Relational) Databases

Part of classic relational databases is the concept of ACID! (atomicity, consistency,
isolation, durability). To summarize ACID, it means that the database is always in a
consistent state (with enforced constraints), even if the system crashes in the middle of an
update. For example, if a column in a table is marked as “non null,” it will never be null.
This may seem like a simple thing to achieve, but it is actually very hard.

q‘. Some good open source databases include PostgreSQL, MySQL, and H2.

'https://en.wikipedia.org/wiki/ACID.

© Adam L. Davis 2016 107
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_20

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

CHAPTER 20 I DATABASES

20.1.1 SQL

The basic language of relational databases is SQL. It includes the ability to define tables
and perform complex queries on those tables.
For example, creating a table looks something like the following:

1 CREATE TABLE dragon(

2 dragon_id INTEGER,

3 dragon_name VARCHAR(100),
4 birth_date DATE NOT NULL,
5 PRIMARY KEY (dragon id)
6)s

A table always needs to have a primary key—it acts as the identifier for each row of
the table. In this case, the primary key is dragon_id.

Database types cover the basics, such as INTEGER, but other unfamiliar types include
the following:

e VARCHAR(length) is similar to the String object. It has a given
maximum length.

e TIMESTAMP is used to store dates and times.

e NUMERIC(precision, scale) or DECIMAL(precision, scale)is
used to store numbers such as currency values (for example, the
number 123.45 has a precision of 5 and a scale of 2).

e BLOB is typically used to store binary data.

To find the birthday of your oldest dragon, you might perform the following query:
1 SELECT MIN(birth date) FROM dragon;

Or, to select all dragons whose names start with S (in alphabetic order), run the
following:

1 SELECT dragon_id, dragon_name FROM dragon
2 WHERE dragon_name LIKE 'S%'
3 ORDER BY dragon_name;

20.1.2 Foreign Keys

A foreign key is simply a column in a table that references the primary key of another table.

For example, let’s say you have a wizard table, and each wizard has multiple dragons
they keep as pets. If the wizard table’s primary key is wizard_id, the “dragon” table would
have the following column and foreign key constraint:

1 owner INTEGER,
2 FOREIGN KEY owner REFERENCES wizard (wizard id)

108

CHAPTER 20 © DATABASES

thIthough SQL keywords are shown in uppercase, this is not required by all databases.

20.1.3 Connections

A database system typically runs as a separate process, and your code connects to it in
some way.

There are many different ways to do this.

In Java, the most basic standard for connecting to databases is called JDBC.

It allows you to run SQL statements on the database. You will need a specific driver
for your database.

There are also object-relational mapping (ORM) frameworks, such as Hibernate.?
These frameworks have you map Java objects to data tables. They are built on fop of JDBC.
For example, Hibernate has its own query language, called HQL, which is translated into
SQL by Hibernate. Grails uses Hibernate.

Alternatively, there are code-generating frameworks that allow you to use a DSL for
queries. One such framework for Java is jJOOQ.? It allows you to write type-safe queries in
the native language. For example:

1 create.selectFrom(DRAGON)
2 .where (DRAGON.NAME . 1ike("S%"))
3 .orderBy (DRAGON. NAME)

20.2 NoSQL Databases

Big web projects (such as Wikipedia) had problems using relational databases to scale up
to millions of users. They had to partition their database onto multiple machines (called
sharding), which broke foreign key references. So, over time, big-data projects moved to
NoSQL databases, which are basically key-value stores that can be scaled up more easily.

NoSQL databases are used by Netflix, Reddit, Twitter, GitHub, Pinterest, eBay,
eHarmony, craigslist, and many others.

Note | will cover some NoSQL databases here, but there are many others.

*http://hibernate.org/orm/.
Shttp://jooq.org/.

109

http://hibernate.org/orm/
http://jooq.org/
http://hibernate.org/orm/
http://jooq.org/

CHAPTER 20 I DATABASES

20.2.1 Redis

Redis’ is a key-value store. Everything is stored as a string in Redis, including binary data.
It's written in C and has a long list of commands.®

There are multiple clients for using Redis from many different languages, including
Java, Node.js, Scala, Ruby, Python, and Go.

20.2.2 MongoDB

MongoDBe calls itself a document database. It stores JSON-style (JavaScript) documents
and has a rich query syntax. It's written in C++, but JavaScript can be used in queries and
aggregation functions.
MongoDB supports indexing of any field in a document. It scales horizontally using
sharding and provides high availability and increased throughput using replication.
MongoDB can also be used as a file system.

20.2.3 Cassandra

Cassandra’ was originally developed at Facebook and was released as an open source
project in July 2008. It’s written in Java and is now a mature, top-level Apache project.
Cassandra is scalable, decentralized, fault-tolerant, and has tunable consistency.
It also uses replication for fault-tolerance and performance.
Cassandra has an SQL-like alternative called CQL (Cassandra Query Language).
Language drivers are available for Java (JDBC), Python (DBAPI2), and Node.JS (Helenus).

20.2.4 VoltDB

VoltDB? provides a counter-example to the SQL/NoSQL divide. It’s distributed,
in-memory, and lightning-fast, but it’s also a relational database and supports SQL.

20.3 Summary
e There are two major types of databases: SQL and NoSQL.

e Relational (SQL) databases are highly structured, consistent, and
durable, but difficult to scale up.

e Big-data projects tend to use NoSQL databases, which are key-
value stores that can be scaled up more easily.

*http://redis.io/.
*http://redis.io/commands.
Swww .mongodb . org/.
"http://cassandra.apache.org/.
fhttp://voltdb.com/.

110

http://redis.io/
http://redis.io/commands
http://www.mongodb.org/
http://cassandra.apache.org/
http://voltdb.com/
http://redis.io/
http://redis.io/commands
http://www.mongodb.org/
http://cassandra.apache.org/
http://voltdb.com/

CHAPTER 21

Conclusion

If you've gotten this far, congratulations! You probably know a lot more than when you
started (I hope). This book ended up being a lot longer than I initially planned, and, at
first, some readers might even have thought, “Hey! That’s not easy!”

It turns out that programming can be challenging and complex. There are many
layers to a typical program covering different levels of abstraction, and a whole version-
control mess, if you work on a large team. However, I stand by the title of the book. To me,
what really makes something easy is if it's fun or rewarding. If it’s not fun or rewarding,
even the simplest task, such as doing dishes, seems difficult. However, if something is fun,
a person will be inclined to spend hours a day at it, becoming a master through practice
over time.

I hope that you have found something fun in this book. If not, please think of an
alternative you do find fun or rewarding (sports, music, movies, whatever) and write a
program related to it. That is the best way to learn programming.

© Adam L. Davis 2016 111
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8_21

Appendixes

/

Appendix A: Java/Groovy’

Feature Java Groovy

Public class public class class

Loops for(Type it : c){...} c.each {...}

Lists List list = asList(1,2,3); def list = [1,2,3]
Maps Map m = ...; m.put(x,y); defm = [x:y]
Function def. void method(Type t) {} def method(t) {}
Mutable value Type t def t

Immutable value final Type t final t

Null safety (x == null ? null : x.y) x?.y

Null replacement (x == null 2 “y” : x) x 20 "y"

Sort Collections.sort(list) list.sort()
Wildcard import import java.util.*; import java.util.*
Var-args (String... args) (String... args)
Type parameters Class<T> Class<T>
Concurrency Fork/Join GPars

"VWersion 1.3 of this cheat sheet.

© Adam L. Davis 2016 113
A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8

APPENDIXES

No Java Analog

Feature Groovy

Default closure arg. it

Default value def method(t = "yes")

Add method to object t.metaClass.method = {}
Auto-delegate @elegate

Extension methods Categories

Rename import

import java.util.Vector as Vect

Tricks

Feature Groovy

Range def range = [a..z]
Slice def slice = list[0..3]

<< Operator

Cast operation

GString

list << addMeTolList

def dog = [name: "Fido", speak:{println
"woof"}] as Dog

def gString = "Dog's name is ${dog.name}"

114

Appendix B: Java/Scala?

APPENDIXES

Feature Java Scala

Public Class public class class

Loops for(Type it : ¢){...} c.foreach {...}

Lists List list = aslList(1,2,3); wval list = List(1,2,3)
Maps Map m = ...; m.put(x,y); val m = Map(x -> y)

Function Def.

void method(Type t) {}

def method(t: Type) = {}

Mutable Value Type t var t: Type

Immutable Value final Type t val t: Type

Null safety (x == null ? null : x.y) for (a <- Option(x)) yield a.y
Null replacement (x == null ? "y" : x) Option(x) getOrElse “y”
Sort Collections.sort(list) list.sort(_ <)

Wildcard import import java.util.*; import scala.collection.
Var-args (String... args) (args: String*)

Type parameters Class<T> Class[T]

Concurrency Fork/Join Akka

No Java Analog

Feature Scala

Default closure arg.

Default value

Add method to object

Auto-delegate

Extension methods

Rename import

_ (underscore is positionally matched)
def method(t:String = “yes”)

useTrait
use Trait

implicit class

import scala.collection.{Vector => Vect}

2Version 1.3 of this cheat sheet.

115

APPENDIXES

Null, Nil, Etc.

Type Description

Null A Trait with one instance, null, similar to Java’s null.

Nil Represents an empty List of zero length.

Nothing A Trait that is a subtype of everything. There are no instances of it.
None None signifies no result. Option has two subclasses: Some and None.
Unit Type to use on a method that does not return a value

116

Appendix C: Java/JavaScript?

APPENDIXES

Feature

Java

JavaScript

Public class
Loops

Lists

Maps

Function def.
Mutable value
Immutable value
Null safety

Null replacement
Sort

Wildcard import
Var-args

Type parameters
Concurrency

public class

for(Type it : ¢){...}

List list = aslist(1,2,3);
Map m = ...; m.put(x,y);
void method(Type t) {}
Type t

final Type t

(x == null ? null : x.y)
(x == null ? "y" : x)
Collections.sort(list)
import java.util.*;
(String... args)
Class<T>
Fork/Join

function
c.forkach(function(){...})
var list = [1,2,3]

var m = {x: y}

function method(t) {}
var t

const t

(x == null ? null : x.y)
x?2x:'y'
list.sort()
N/A

0

N/A

No Java Analogue

Feature JavaScript
Add method to object t.method = function() {}
Extension methods Type.prototype.method = function() {}

3Version 1.2 of this cheat sheet.

117

APPENDIXES

Appendix D: Resources

e Java Tutorials*

e Java Docs®

e GroovyDocs®

e ScalaDocs’

e Grails Docs®

e PlayDocs’

e Heroku Dev Center'

e JavaOne (by going to Tools » Content Catalog'!)
e StackOverflow'

e Free Programming Books"

*http://docs.oracle.com/javase/tutorial/.
*http://docs.oracle.com/javase/7/docs/api/.
Shttp://groovy.codehaus.org/Documentation.
"www.scala-lang.org/documentation/.
fhttp://grails.org/learn.

“www . playframework.com/documentation/2.2.x/Home.
https://devcenter.heroku.com/.
"www.oracle.com/javaone/index.html.
Zhttp://stackoverflow.com/.
Phttps://github.com/vhf/free-programming-books/blob/master/free-programming-
books .md.

118

http://www.oracle.com/javaone/index.html
https://github.com/vhf/free-programming-books/blob/master/free-programming-books.md
http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/7/docs/api/
http://groovy.codehaus.org/Documentation
http://www.scala-lang.org/documentation/
http://grails.org/learn
http://www.playframework.com/documentation/2.2.x/Home
https://devcenter.heroku.com/
http://www.oracle.com/javaone/index.html
http://stackoverflow.com/
https://github.com/vhf/free-programming-books/blob/master/free-programming-books.md
https://github.com/vhf/free-programming-books/blob/master/free-programming-books.md

APPENDIXES

Appendix E: Free Online Learning

Khan Academy' is amazing. If you haven’t seen it yet, please take a look. The founder
started out by teaching his cousins remotely and putting the videos on YouTube. He then
created hundreds of videos, teaching millions of people. Khan Academy encompasses
nearly every subject: science, math, finance, history, computer science, and more. The
amazing thing is, it’s all free!

Contrast this, for example, with the price of higher education in the United States.
It's been skyrocketing,'® owing partly to government-funded student loans and partly to
other factors.

Online education is flourishing. Many classes in this space are free or very
inexpensive. Coursera'® allows students to take courses from leading institutions, such
as Stanford, Princeton, and Emory University. Online interactive platforms such as
Codecademy'’ (free) and Codeschool' (selectively free) offer to teach you to program.

The Death of College?

Is there any point in going to college anymore? College offers so many benefits other than
the obvious textbook knowledge: learning to work with others, the social life, athletics,
and accountability (not to mention the prestige associated with a degree). However, it
seems like these benefits could be achieved in different, less expensive ways—perhaps
not a degree but something like certificates, which could be just as useful.

You've probably been able to simply buy books and teach yourself, or learn by
doing, so let’s not overestimate the potential of online learning. However, with so many
alternatives cropping up, and the advantages of college being questionable, it’s easy to
imagine education being less expensive in the future.

Money

Sure that’s all great, but are these “schools” sustainable? What is the business model?
Well, Khan Academy is a not-for-profit'® venture, so its future is entirely dependent on the
generosity of donors. The other institutions cited are conventional companies. Some offer
free samplers, with normal courses requiring tuition.

Coursera and its peers will most likely charge only for the certificate,* not the actual
learning. This is a promising business model.

“www . khanacademy.org/.

Bhttps://en.wikipedia.org/wiki/Higher_ Education_Price_Index.
'www . coursera.org.

"www . codecademy . com/learn.

"www . codeschool.com/.

“www . khanacademy.org/about.

2www . quora.com/Coursera/What-is-Courseras-business-model/answer/
Franck-Dernoncourt.

119

http://www.khanacademy.org/
https://en.wikipedia.org/wiki/Higher_Education_Price_Index
https://www.coursera.org/
http://www.codecademy.com/learn
http://www.codeschool.com/
http://www.khanacademy.org/about
http://www.khanacademy.org/about
http://www.quora.com/Coursera/What-is-Courseras-business-model/answer/Franck-Dernoncourt
http://www.khanacademy.org/
https://en.wikipedia.org/wiki/Higher_Education_Price_Index
http://www.coursera.org/
http://www.codecademy.com/learn
http://www.codeschool.com/
http://www.khanacademy.org/about
http://www.quora.com/Coursera/What-is-Courseras-business-model/answer/Franck-Dernoncourt
http://www.quora.com/Coursera/What-is-Courseras-business-model/answer/Franck-Dernoncourt

APPENDIXES

More Online Resources

The following is a list of various web sites offering the opportunity to learn just about
anything:

e Khan Academy*': Math, Python

e Codecademy*: JavaScript, HTML/CSS, PHP, Python, Ruby
e Coursera®: Algorithms, Programming, etc.

e Codeschool**: Ruby, JavaScript, HTML/CSS, iOS

e Udacity”: Everything from “Introduction to Computer Science” to
“Applied Cryptography”

e CodeCombat**: Learn JavaScript through a game

2www . khanacademy.org/.
“www . codecademy . com/leaxn.
Zwww . Coursera.org/courses.
*www . codeschool.com/.
“www.udacity.com/.
*http://codecombat.com/.

120

http://www.khanacademy.org/
http://www.codecademy.com/learn
https://www.coursera.org/courses
http://www.codeschool.com/
http://www.udacity.com/
http://codecombat.com/
http://www.khanacademy.org/
http://www.codecademy.com/learn
http://www.coursera.org/courses
http://www.codeschool.com/
http://www.udacity.com/
http://codecombat.com/

APPENDIXES

Appendix F: Java

Java* was first developed in the 90s by James Gosling. It borrowed much of its syntax from
C and C++, to be more appealing to programmers at the time. Java was owned by Sun
Microsystems, which was acquired by Oracle in 2010.

Java is a statically typed, object-oriented language. “Statically typed” means that
every variable and parameter must have a defined type, as opposed to languages such
as JavaScript, which are dynamically typed. “Object-oriented” (O0O) means that data and
functions are grouped into objects (functions are usually referred to as methods in 0O
languages).

Java code is compiled to bytecode that runs on a virtual machine (the Java Virtual
Machine, JVM). The virtual machine handles garbage collection and allows Java to be
compiled once and run on any OS or hardware that has a JVM. This is an advantage over
C/C++, which must be compiled directly to machine code and has no automatic garbage
collection (the programmer has to allocate and de-allocate memory).

The standard implementation of the JVM is packaged in two different ways: the JRE
(Java Runtime Environment) and the JDK (Java Development Kit). The JRE is strictly for
running Java as an end user, while the JDK is for developing Java code. The JDK comes
with the javac command for compiling Java code to bytecode, among other things.

As of this writing, Java is one of the most popular programming languages in use,*
particularly for server-side web applications.

The Java ecosystem is huge. It's mainly composed of JVMs, libraries, tools, and IDEs.
If you'd like to learn more, you could read Modern Java? which delves more deeply into
the ecosystem.

YJava is a registered trademark of Oracle.
Zwww. tiobe.com/index.php/content/paperinfo/tpci/index.html.
Phttps://leanpub.com/modernjava.

121

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://leanpub.com/modernjava
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://leanpub.com/modernjava

Index

A

Actor design pattern, 48
Ant, 69
Application program
interface (API), 62, 81
Arrays, 19
Assignment, 9
Autoboxing, 41

Binary files, 7
Boolean logic operators, 27
Build process, 69
Ant, 69
Gradle
DSL, 73

Maven dependencies, 74

plug-ins, 74
projects and tasks, 73
web site, 73

Maven, 69

tools, 69

C

Call me method, 29
Coupling, 45
Class, 9
Groovy, 10
properties and methods, 10
Scala, 11
Cloud, 92
Coding terms, 7
Comments, 11
Conditional statement, 25
curly brackets ({}), 25

© Adam L. Davis 2016

boolean operators, 27
if, then, else, 25
switch keyword, 26

D

Databases
big-data projects, 107
NoSQL, 109
Cassandra, 110
MongoDB, 110
Redis, 110
VoltDB, 110
SQL (see Structured Query
Language (SQL))
Design patterns, 43
actor, 48
coupling, 45
DSL (see Domain specific
language (DSL))
model-view-controller (MVC), 44
observer, 43
do/while loop, 27
Domain specific language (DSL), 45, 73
closures, 46
overriding operators, 47
doSomething() method, 27

E

Encapsulation, 38

F

Functional interface, 50
Functional programming (FP), 49
closure, 50
concat, 53

123

A. L. Davis, Modern Programming Made Easy, DOI 10.1007/978-1-4842-2490-8

INDEX

Functional programming (FP) (cont.)

filter, 51

functions, 49

Groovy, 55
immutability, 53

Java 8, 54

limit, 52

map, 51

reduce, 52

Scala, 50, 55

sequence operations, 51

G

Generic type, 20
getText() method, 82-83
Git, 86
GitHub, 6
Gradle
DSL, 73
Maven dependencies, 74
plug-ins, 74
projects and tasks, 73
web site, 73
Grails, 89
overview, 89-91
plug-ins, 91-92
Griffon, 99
Groovy, 55, 62

H

handleKeyPress method, 98

Hypertext Transfer Protocol (HTTP), 89

Inheritance
abstract class, 39
annotations, 40
autoboxing, 41
composition, 35
enums, 40
extends keyword, 35
interfaces, 39
object
classes, 35
JavaScript, 36
pass by reference, 36
packages, 38

124

parent class
definition, 36
extension, 37
fly() method, 36
JavaScript, 37
public parts, 38
encapsulation, 38
JavaScript, 39
unboxing, 41
Input/output
download, 83
files and directories, 81
reading files, 81-82
writing files, 82
Interfaces, 39
Interpreted languages, 7
Interweb
cloud, 92

first web application, 88-89

Grails, 89
overview, 89-91
plug-ins, 91-92
Port, 89
REST, 93
Web 88, 101

J

Java, 3
Java 8, 54
Java/Groovy, 5
JavaScript
object, 36
parent class, 37
public parts, 39
java.util.Math class, 16
JUnit
assert methods, 78
assumptions, 79
Hamcrest, 78

K

KeyListener, 98

L

Lists
generic type, 20
Groovy, 21

JavaScript arrays, 21
methods, 20
Scala, 21

Loop condition, 25
do/while, 27-28
for loop, 28

Magical user experience
application hierarchy, 103
audience, 103
context, 105
direction, 104
illusion, 104
KISS, 105
Skuemorphism, 104
users, 105

Main method, 31-32

Maps, 23
Groovy, 23
JavaScript, 24
methods, 23
Scala, 23

Math
adding and subtracting, 15
complex math, 16
decrement operator, 15
increment operator, 15
Modulo, 16
random numbers, 17
static method, 16

Maven, 6
code execution, 72
configuration file

and project folders, 70
Java projects, 69
life cycle, 71
use of, 70
Mercurial predates Git, 86
Meta-programming
techniques, 63

Methods
break it down, 30
call me, 29
main method, 31
non-Java, 30
return to sender, 30
static method, 31
varargs, 31

Model-view-controller (MVC), 44

Modulo, 16

INDEX

N

NoSQL databases
Cassandra, 110
MongoDB, 110
Redis, 110
VoltDB, 110

NoSQL Databases, 109

(0

Object-relational mapping (ORM), 109
Obijects, 9

creation, 11

JavaScript prototypes, 10

PQ

Packages, 38

paint method, 96
Primitive types, 7
Problem-solving, 3

R

random() method, 17, 31
Refactoring
delegation (moving method), 58
extract common code, 60
function, 57
inline function, 60
literals and constant, 59
meaning, 57
method renaming, 58
object-oriented programming, 57
renaming function, 59
wrapping function, 59
Reference, 8
Relational database. See Databases
REpresentational State Transfer (REST), 93
HTTP method, 93
Maven Archetypes, 93

S

Scala, 6, 55

Scanner, 65
setAlwaysOnTop method, 96
Sets, 22-23

Sharding, 109
Skuemorphism, 104
Statements, 9

125

INDEX

Static method, 31

Strings, 8

Structured Query Language (SQL), 107
connections, 109
foreign keys, 108-109
relational databases, 107
table creation, 108
types, 108

Subversion, 85

Swinging graphics
2D/3D graphics, 99-100
component, 100
double-buffering, 100
fake browser, 97
frame and GUI, 100
Griffon, 99
Hello Window, 95
layout and menu, 100
panel and pixel, 100
push my buttons, 97
window, 100

T

Testing, 77
JUnit
assert methods, 78
assumptions, 79
Hamcrest, 78
types of, 77
toURL() method, 83

126

U

Unboxing, 41
Universal Resource
Locator (URL), 89
Utilities
currency, 64
dates and times, 61
categories, 62
DateFormat, 63
Groovy, 62
Java 8, 62
JavaScript, 63
scanner, 65
TimeZone, 64

\'

Varargs, 31
Variable arguments, 31
Version control
system (VCS), 85
actions, 85
Git, 86
Mercurial predates Git, 86
subversion (SVN), 85

W, XY,Z

WatchService, 81
Web 88, 101

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Part I: Starting Out
	Chapter 1: Introduction
	1.1 Problem Solving
	1.2 About This Book

	Chapter 2: Software to Install
	2.1 Java/Groovy
	2.1.1 Trying It Out

	2.2 Others
	2.3 Code on GitHub

	Chapter 3: The Basics
	3.1 Coding Terms
	3.2 Primitives and Reference
	3.3 Strings/Declarations
	3.4 Statements
	3.5 Assignment
	3.6 Class and Object
	3.6.1 Properties and Methods
	3.6.2 Groovy Classes
	3.6.3 JavaScript Prototypes
	3.6.4 Scala Classes
	3.6.5 Creating a New Object

	3.7 Comments
	3.8 Summary

	Part II: Glorified Calculator
	Chapter 4: Math
	4.1 Adding, Subtracting, Etc.
	4.2 More Complex Math
	4.3 Random Numbers
	4.4 Summary

	Chapter 5: Arrays, Lists, Sets, and Maps
	5.1 Arrays
	5.2 Lists
	5.2.1 Groovy Lists
	5.2.2 Scala Lists
	5.2.3 JavaScript Arrays

	5.3 Sets
	5.4 Maps
	5.4.1 Groovy Maps
	5.4.2 Scala Maps
	5.4.3 JavaScript Maps

	5.5 Summary

	Chapter 6: Conditionals and Loops
	6.1 If, Then, Else
	6.2 switch Statements
	6.3 Boolean Logic
	6.4 Looping
	6.5 Summary

	Chapter 7: Methods
	7.1 Call Me
	7.1.1 Non-Java

	7.2 Break It Down
	7.3 Return to Sender
	7.4 Static
	7.5 Varargs
	7.6 Main Method
	7.7 Exercises
	7.8 Summary

	Part III: Polymorphic Spree
	Chapter 8: Inheritance
	8.1 Objectify
	8.1.1 JavaScript

	8.2 Parenting 101
	8.2.1 JavaScript

	8.3 Packages
	8.4 Public Parts
	8.4.1 JavaScript

	8.5 Interfaces
	8.6 Abstract Class
	8.7 Enums
	8.8 Annotations
	8.9 Autoboxing
	8.9.1 Autoboxing
	8.9.2 Unboxing

	8.10 Summary

	Chapter 9: Design Patterns
	9.1 Observer
	9.2 MVC
	9.3 DSL
	9.3.1 Closures
	9.3.2 Overriding Operators

	9.4 Actors

	Chapter 10: Functional Programming
	10.1 Functions and Closures
	10.2 Map/Filter/etc.
	10.3 Immutability
	10.4 Java 8
	10.5 Groovy
	10.6 Scala
	10.7 Summary

	Chapter 11: Refactoring
	11.1 Object-Oriented Refactoring
	11.2 Functional Refactoring
	11.3 Refactoring Examples
	11.3.1 Renaming a Method
	11.3.2 Moving a Method from One Class to Another (Delegation)
	11.3.3 Replacing a Bunch of Literals (Strings or Numbers) with a Constant (Static Final)
	11.3.4 Renaming a Function
	11.3.5 Wrapping a Function in Another Function and Calling It
	11.3.6 Inline a Function Wherever It Is Called
	11.3.7 Extract Common Code into a Function (the Opposite of the Previous)

	Chapter 12: Utilities
	12.1 Dates and Times
	12.1.1 Java 8 Date-Time
	12.1.2 Groovy Date
	12.1.3 JavaScript Date
	12.1.4 Java DateFormat

	12.2 Currency
	12.3 TimeZone
	12.4 Scanner

	Part IV: Real Life
	Chapter 13: Building
	13.1 Ant
	13.2 Maven
	13.2.1 Using Maven
	13.2.2 Starting a New Project
	13.2.3 Life Cycle
	13.2.4 Executing Code

	13.3 Gradle
	13.3.1 Projects and Tasks
	13.3.2 Plug-ins
	13.3.3 Maven Dependencies

	Chapter 14: Testing
	14.1 Types of Tests
	14.2 JUnit
	14.2.1 Hamcrest
	14.2.2 Assumptions

	Chapter 15: Input/Output
	15.1 Files
	15.2 Reading Files
	15.3 Writing Files
	15.4 Downloading Files
	15.5 Summary

	Chapter 16: Version Control
	16.1 Subversion
	16.2 Git
	16.3 Mercurial

	Chapter 17: The Interweb
	17.1 Web 101
	17.2 My First Web App
	17.3 The Holy Grails
	17.3.1 Quick Overview
	17.3.2 Plug-ins

	17.4 Cloud
	17.5 The REST
	17.5.1 Using Maven Archetypes

	17.6 Summary

	Chapter 18: Swinging Graphics
	18.1 Hello Window
	18.2 Push My Buttons
	18.3 Fake Browser
	18.4 Griffon
	18.5 Advanced Graphics
	18.6 Graphics Glossary
	18.7 Summary

	Chapter 19: Creating a Magical User Experience
	19.1 Application Hierarchy
	19.2 Consider Your Audience
	19.3 Choice Is an Illusion
	19.4 Direction
	19.5 Skuemorphism
	19.6 Context Is Important
	19.7 KISS
	19.8 You Are Not the User
	19.9 Summary

	Chapter 20: Databases
	20.1 SQL (Relational) Databases
	20.1.1 SQL
	20.1.2 Foreign Keys
	20.1.3 Connections

	20.2 NoSQL Databases
	20.2.1 Redis
	20.2.2 MongoDB
	20.2.3 Cassandra
	20.2.4 VoltDB

	20.3 Summary

	Chapter 21: Conclusion

	Appendixes
	Appendix A: Java/Groovy

	No Java Analog
	Tricks

	Appendix B: Java/Scala

	No Java Analog
	Null, Nil, Etc.

	Appendix C: Java/JavaScript

	No Java Analogue

	Appendix D: Resources
	Appendix E: Free Online Learning
	The Death of College?
	Money
	More Online Resources

	Appendix F: Java

	Index

